DRAFT ENVIRONMENTAL IMPACT ASSESSMENT AND

ENVIRONMENTAL MANAGEMENT PLAN OF

SAND MINING PROJECT ON KIUL RIVER AT (JAMUI KIUL BLOCK - 15) SAND GHAT

SAND BLOCK	BLOCK 15
PROPOSAL NO	SIA/BR/MIN/414505/2023
TOR NO	SIA/1(a)//2358/2023
AREA	17.6 HA
PRODUCTION	105600 cum/year or 217536 TPA
LOCATION	Mauza – Satgama, Block- Jamui, District- Jamui, Bihar

Applicant

M/s- Ganesh Sai Contractor And Construction Pvt. Ltd.
Vinay Kumar,
S/o- Prahlad Yadav,
Add.- Near Kiul Railway Station, Lakhisarai

CONSULTANT

P&M Solution

C-88, Sector 65, Noida -201301 - U.P

A QCI -NABET Accredited Organization

Regional Office: 201, Mangal Market, Raja Bazaar, Patna, Bihar

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

TABLE OF CONTENTS

CHAPTERS	TITLE	PAGE NO				
	CHAPTER 1 INTRODUCTION					
1.0	Purpose of the Report	I-1				
1.1	Identification of project & project proponent	I-2				
1.2	Brief description of project	I-3				
1.3	Environmental Setting	I-6				
1.4	Scope of the Study	I-7				
	CHAPTER 2					
	PROJECT DESCRIPTION	1				
2.0	General	II-27				
2.1	Need for the project	II-27				
2.2	Location Details	II-27				
2.3	Topography & Geology	II-30				
2.4	Geological Reserve	II-32				
2.5	Conceptual Mining Plan	II-36				
2.6	Anticipated Life of Mine	II-36				
2.7	General Features	II-37				
	CHAPTER 3					
	BASELINE ENVIRONMENTAL STATUS					
3.0	General	III-40				
3.1	Land Environment of the Study Area	III-41				
3.2	Water Environment	III-42				
3.3	Air Environment	III-48				
3.4	Soil Environment	III-56				
3.5	Noise Characteristics	III-58				
3.6	Biological Environment	III-60				
3.7	Socio-Economic Environment	III-84				
	CHAPTER 4					
	IPATED ENVIRONMENTAL IMPACTS & MITIGATION MEAS					
4.0	General	IV-116				
4.1	Land Environment	IV-117				
4.2	Water Environment	IV-118				
4.3	Impact on Air Quality	IV-119				

4.4	Noise Environnent	IV-123			
4.5	Biological Environment	IV-124			
4.6	Traffic Analysis	IV-126			
	CHAPTER 5				
	ANALYSIS OF ALTERNATIVE TECHNOLOGY & SITE				
5.0	Analysis of alternative Technology & Site	V-131			
5.1	Site Alternatives under Consideration	V-131			
5.2	Analysis of alternative Technology	V-131			
	CHAPTER 6				
	ENVIRONMENT MONITORING PROGRAMME				
6.0	Introduction	VI-132			
6.1	Environmental Monitoring and Reporting Procedure	VI-132			
6.2	Monitoring Methodologies And Parameters	VI-133			
6.3	Monitoring Schedule	VI-134			
6.4	Monitoring Schedule-Implementation	VI-135			
6.5	Budget allocation for Monitoring	VI-135			
6.6	Reporting Schedule of the monitoring data	VI-136			
	CHAPTER 7	1			
	ADDITIONAL STUDIES				
7.0	Public Consultation	VII-137			
7.1	Hazard Identification and Risk assessment methodology	VII-137			
7.2	Risk Assessment	VII-140			
7.3	Disaster Management Plan	VII-143			
7.4	Socio-Economic Impact of the project	VII-144			
	CHAPTER 8				
	PROJECT BENEFITS	T			
8.0	General	VIII-149			
8.1	Physical Benefits	VIII-149			
8.2	Social Benefits	VIII-149			
8.3	Environmental Benefits	VIII-150			
8.4	Corporate Environmental Responsibility	VIII-151			
0.0	CHAPTER 9	IV 150			
9.0	Introduction Environment Management Cell	IX-152			
9.1	Environment Management Cell Air Pollution Control	IX-152			
9.2	Water Pollution Control	IX-153 IX-154			
9.3	Noise Pollution Control Measures	IX-154 IX-154			
9.4	THOUSE TOHRIUH COHHOL IMEASULES IX-134				

TOC

9.5	Biological Environment	IX-155
9.6	Land use Planning	IX-157
9.7	Occupational Hazards & Safety	IX-157
9.8	Socio-economic Environment	IX-158
9.9	Environment Policy	IX-158
9.10	Budget Allocation for EMP Implementation	IX-159
	CHAPTER 10	
	SUMMARY AND CONCLUSION	
10.1	Purpose of the Report	X-161
10.2	Identification of Project & Project Proponent	X-161
10.3	Brief Description of Project	X-162
10.4	Project Description	X-164
10.5	Afforestation Programme	X-165
10.6	Land Use Pattern	X-165
10.7	Baseline Environmental Status	X-166
10.8	Anticipated Environmental Impacts	X-167
10.9	Environmental Management Plan	X-169
10.10	Environmental Monitoring Program	X-169
10.11	Environmental Monitoring Cost	X-170
10.12	Additional Studies	X-170
10.13	Project Benefits	X-171
10.14	Conclusions	X-171
	CHAPTER 11	
11.0	Disclosure of Consultants	XI-173
1		

SL NO.	ANNEXURE
1.	TOR
2.	LOI
3.	Mine Plan

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

1.0 PURPOSE OF THE REPORT

Environment Impact Assessment (EIA) is a process used to identify the environmental, social & economic impacts of a project prior to decision making. It aims to predict environmental impacts at an early stage of project planning & design, find ways & means to reduce adverse impacts. By using EIA, we can decide the suitable mitigation measures for implementation to maintain healthy working environment and contain pollution within permissible limits.

River plays an important role in the lives of the people. The river systems provide irrigation, potable water, transportation, electricity, and the livelihoods for a large number of people all over the country and to rural areas. Apart from this, river is also a good source of construction grade material as sand & gravel.

As transportation and construction infrastructure expanded since last few decades, the demand for construction grade sand also increased exponentially. The market demand of river sand is high throughout the nation. Sand is extracted directly from the river channel and it doesn't require processing other than size grading. But it is now well understood that continued and indiscriminate sand mining can cause serious environmental impacts, particularly if the river being mined is eroded.

Environmental Impact Assessment is one of the proven management tools for integrating environmental concerns in development process and for improved decision making as there is a need to harmonize the developmental activities with the environmental concerns into the larger interest of the society. The growing awareness, over the years, on environmental protection and sustainable development, has given further emphasis to the implementation of sound environmental management practices for mitigating adverse impacts from developmental activities. EIA study plays a vital role in sustainable development of a country. Recognizing its importance, the Ministry of Environment and Forest, Government of India had formulated policies and procedures governing the industrial and other developmental activities to prevent indiscriminate exploitation of natural resources and to promote integration of environmental concern in project development.

Environmental Impact Assessment report is prepared to comply with the Terms of Reference (TOR) received from SEIAA, Bihar under EIA notification of the MoEF & CC dated 14th September, 2006

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

and its subsequent amendment there-off and also the EIA Guidance Manual for Mining of Minerals of MoEF & CC, Govt. of India, for seeking environmental clearance for mining of Sand in the applied mining lease area.

1.1 IDENTIFICATION OF PROJECT, PROJECT PROPONENT & CLUSTER APPROCH

The Proposed Sand Mining Project is located on Kiul River at **Jamui Kiul Block 15 Sand Ghat** At Mauza – Satgama, Block -Jamui, District- Jamui, (Bihar).

The proposed mining is a cluster of 03 mining lease area of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 over an combined area of 135.3 Ha is for river bed sand mining on Kiul River at Dist-Jamui, Bihar.

Cluster Situation: As per District Survey Report Jamui the Proposed Sand Ghats of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 are comes in cluster situation whose combined cluster area is 135.3 ha. All the lease area of homogeneous minerals is coming within 500 m radius from each other confirming a cluster situation.

As per the Director of Geology, Bihar, the modification of mining plan has been approved .As per EIA notification 2016 and subsequent amendments, the project is coming under category 'B' (B1) and the lease area is more than 5.0 Ha, approved Mining Plan, Pre-feasibility Report and EMP are required for Environment Clearance in respect of the said quarry lease. Copy of letter is enclosed as **Annexure No. II.**

The Details of Cluster of lease area given below(As per DSR):

Sand Block Name	Area (Ha)	Production
Jamui Kiul Block 13	69.9	388104 TPA
Jamui Kiul Block 14	51.8	376980 TPA
Jamui Kiul Block 15	17.6	379452 TPA
Total	135.3	11,44,536 TPA

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

The proposed project is of River bed sand mining and falls under Category- "B1" as per EIA Notification 2006 and its subsequent amendments by Ministry of Environment Forests & Climate Change, GOI. Jamui Kiul Block 15 Sand Ghat fall in Mauza – Satgama, Block -Jamui Dist - Jamui (Bihar). The details of the project are given below:

Name & Address of the Mine		Kiul	Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block -
	Block 15		Jamui, District- Jamui, (Bihar)
River	Kiul		,
Mineral	Sand		
Area (Ha.)	Jamui	Kiul	17.6 Ha.
	Block 15		
Production	Jamui	Kiul	217536 TPA
	Block 15		
Postal Address	Jamui	Kiul	M/s- Ganesh Sai Contractor And Construction Pvt.
	Block 15		Ltd.
			Vinay Kumar S/o Prahlad Yadav,
			Add Near Kiul Railway Station, Lakhisarai
Status of Mine	Fresh application for Environmental Clearance.		
Project Cost	Rs- 2,01,64,000/-		
CER Cost	CSR cost will be 2% of the total project cost. This amount will be used		
	for social welfare.		
	CSR COST is Rs. 2,01,64,000 x 2% = Rs. 4,03,280/-		

1.2 BRIEF DESCRIPTION OF PROJECT

The proposed project is open cast semi-mechanized mining of sand with a proposed production of 217536 Tonnes per annum for applied lease. Detail has been given below:

The proposed project is over an area 17.6 ha for Jamui Kiul Block 15. Details are summarized in Table no 1.1

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

As per MoEF, New Delhi Gazette dated 14th September 2006 and amended thereof, the proposed mining project is categorized as **Category 'B-1'**. The estimated project cost for the proposed project is **given below:** (including auction cost)

Table: 1.1 Project cost break-up & Production

Block	Area	Khata No	Khasra No	Production	Auction Cost(Rs.)
Jamui Kiul Block 15	17.6	220	1150	217536 TPA	1,74,24,000/-
Total				217536 TPA	1,74,24,000/-

The proposed mining lease area falls in Survey of India Toposheet 72 L/01, 72 L/05, 72 K/04, 72 K/08.

The mine lease co-ordinates and connectivity details are listed below:

Table: 1.2 Mine lease Pillar Co-ordinates (Jamui Kiul Block 15)

Pillar No	Latitude (N)	Longitude (E)
A	24°57'5.82"N	86°14'39.77"E
В	24°56'44.77"N	86°14'48.07"E
С	24°56'45.75"N	86°14'37.02"E
D	24°57′2.46″N	86°14'30.63"E

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

BARHAT RE Project Site Buds 19 Buds 19 Chinbery 8 Buds 19 Chinbery 8 Buds 19 Chinbery 8 Buds 19 Chinbery 8 Buds 19 Bu

Figure 1.1, 10 km buffer map

Table: 1.3, Connectivity Details given below

Nearest Habitation/ town	Blocks		Village		Distance (Km)
					Direction
	Jamui Kiul		Satgama	Satga	ma, approx. 0.31
	Block 15			Km	n SW direction.
			Jamui		ni approx. 3.0 Km in direction.
Nearest Railway Station	Blocks		Railway Stat	ion	Distance (Km)
					Direction
	Jamui Kiul B	lock	Jamui Railw	ay	Jamui Station,
	15		Station		approx. 2.52 km

TOPOSHEET NO: 72L/01

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

			towards NE
			direction.
Nearest Airport	Blocks	Airport	Distance (Km)
			Direction
	Jamui Kiul Block	JPN International	JPN International
	15	Airport Patna	Airport Patna,
			approx. 136 km
			towards NW
			direction.
Nearest Highway	NH 333A: Approx. 0.	80 KM towards West	direction.

1.3, Details of environmental settings

Sl.	Particulars	Details
No.		
1	Ecological Sensitive Areas (National Park, Wildlife Sanctuaries)	No Ecological Sensitive areas found within 10 km study area.
2	Nearest water body	The mine site lies on the dry bed of Kiul river.
3	Seismic Zone	Zone- IV Source BMTC 2 nd edition https://www.bmtpc.org/disaster%20resistnace%20technolgies/ZONE%20I II.htm

The EIA-EMP report is prepared as per the TOR granted under the EIA Notification. In order to assess the impact on environment due to proposed mine, it is necessary to ascertain present status of environment prevailing at the project site and identification and assessment of impacts on the environment of the proposed operation.

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Project's importance to the country and the region

Sands are ubiquitous material; available everywhere and is being used from the time immemorial for wide applications in our daily life; infrastructures, building construction, highways, roads, townships, multiplexes, foundations of buildings and industrial units etc. and is an integral part of development. Life without sand is unthinkable. Over the millennia, the weathering effect, the flow of water at high velocities in rivers and the pressure of water from the high mountainous reservoirs converted and pushed the hard ground underneath into sands, etc. which travelled as sediments with the flow. This sand got deposited along the river course wherever conditions were favorable. In the deep past this settled sand was not extracted in a quantity in which it deposited; since due to less population the requirements was not enough. As a result of continuous deposit of sand, the rivers went on changing their course, widening by itself, eroding the fields and expanding, resulting in flooding, inundation and breaking their banks, causing devastation of property and loss of life. There has been a severe impact on every aspect of the environment. The rivers thus, needed channelization and therefore, extraction of these minor minerals through mining was expedient. The haphazard mining of sands being practiced now for long, through unregulated, uncontrolled and illegal way added almost an irreversible damage to the environment, which became a cause of serious concern to everyone. Though sands are very important mineral source for development, its mining through scientific methods has also become equally imperative.

It is for this purpose that 'mining plan' is being drawn so that all its aspects are taken care of justifiably, according to law, protecting the environment, removing all adverse impacts and creating a direct and indirect employment opportunities, improving socio-economic conditions of the local inhabitants and all-around status of life, achieving thereby a sustainable development.

Besides the above, the process of mining of minor minerals (Sand) is a constant source of revenue generation to the State Government through Royalty.

1.4 SCOPE OF THE STUDY

The project proposal was submitted to State Level Environment Impact Assessment Authority-Bihar for its appraisal. Based on which, presentation was held for Terms of Reference (TOR). Based on the data provided and presentation made, the SEIAA-Bihar has issued the Terms of Reference is attached at **Annexure-1**.

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Followings are the point wise compliance of the ToR provided by the SEIAA Bihar.

Table: 1.5 Point wise compliance for TOR of of Jamui Kiul Block 15 (ToR File No- SIA/1(a)/ 2358/2023)

S. No	TOR	Compliance	Reference in the
			Report
1	Year-wise production details since	This is fresh LOI, Mine is yet to	
	1994 should be given, clearly stating	be opened. It will open only	
	the highest production achieved in any	after getting environmental	
	one year prior to 1994. It may also be	clearance.	
	categorically informed whether there		
	had been any increase in production		
	after the EIA Notification 1994 came		
	into force, w.r.t. the highest production		
	achieved prior to 1994.		
2	A copy of the document in support of	State Govt. has given consent	Annexure II, LOI
	the fact that the Proponent is the	for mining vide letter no. 2073	
	rightful lessee of the mine should be	dated 05-12-2022 in favor of	
	given.	M/s- Ganesh Sai Contractor	
		And Construction Pvt. Ltd.	
		(Vinay Kumar)	
3	All documents including approved	The documents including mine	Annexure- III
	5 11	_	Amiexure- III
	mine plan, EIA and public hearing	plan and EIA report submitted	Mine plan
	should be compatible with one another	are compatible with one another	
	in terms of the mine lease area,	w.r.t. to following information:	All details has been
	production levels, waste generation and	Mining Lease Area- 17.6	complied in
	its management and mining technology	Hectare.	chapter-2
	and should be in the name of the	Lessee: M/s- Ganesh Sai	
		Contractor And Construction	

	lessee.	Pvt. Ltd. (Vinay Kumar) Proposed Production- 105600 cum/year or 217536 TPA. Waste generation- No waste will be generated. Mining Method-Opencast semi- mechanized method	
4	All corner coordinates of the mine lease area, superimposed on a High Resolution Imagery /toposheet, topographic sheet, geomorphology and geology of the area should be provided. Such an Imagery of the proposed area should clearly show the land use and other ecological features of the study area (core and buffer zone).	All Corner Coordinates of mining lease area superimposed on Toposheet Map has been incorporated in EIA/EMP Report	Refer Chapter 2 Fig: 2.1, Corner Coordinates map
5	Information should be provided in Survey of India Toposheet in 1:50,000 scale indicating geological map of the area, geomorphology of land forms of the area, existing minerals and mining history of the area, important water bodies, streams and rivers and soil characteristics.	The land use map showing salient features of the area is given in the report. The geological map of the mine lease area is also given in the report showing geomorphology	Land-use of the study area Figure 3.1.
6	Details about the land proposed for mining activities should be given with information as to whether mining conforms to the land use policy of the State; land diversion for mining should have approval from State land use board or the concerned authority.	The Lease area is dry part of River bed. This is a barren land. The mining process will be done by land use policy of the State & no land diversion has been proposed.	Chapter II & III

7	It should be clearly stated whether the	Yes, the proponent Company	Chapter VIII
	proponent Company has a well laid	has a well laid down	Section 8.1
	down Environment Policy approved by	Environment Policy. The	Section 8.1
	its Board of Directors? If so, it may be	hierarchical system or	Corporate
	spelt out in the EIA Report with	administrative order of the	Environment
	description of the prescribed operating	company has been given in the	Policy
	processes /procedures to bring into	EIA report.	
	focus any infringement / deviation /		
	violation of the environmental or forest		
	norms / conditions?. The hierarchical		
	system or administrative order of the		
	company to deal with the		
	environmental issues and for insuring		
	compliances with the EC conditions		
	may also be given. The system of		
	reporting of non-compliances /		
	violations of environmental norms to		
	the Board of Directors of the Company		
	and/or shareholders or stakeholders at		
	large, may also be detailed in the EIA		
	Report.		
8	Issues relating to Mine safety	Issue related to mine safety has	
	,including subsidence study in case of	been given in of chapter 7.	
	underground mining and slope study in		
	case of open cast mining, blasting		
	study etc. should be detailed. The		
	proposed safeguard measures in each		
	case should also be provided.		
9	The study area will comprise of 10 km	The 10 km zone from periphery	Chapter I
	zone around the mine lease from lease	of the lease has been considered	
	<u> </u>		

	periphery and the data contained in the	as the study area. The Buffer	Figure 1.1
	EIA such as waste generation etc.	map of the study area is	
	should be for the life of the	attached with report.	
	mine/lease period.	All the details in the EIA report	
		are for the life of the mine	
		period.	
		The details of mining &	
		production have been given in	
		the report.	
10	Land use of the study area delineating	Land use pattern of 10 km from	Land-use of the
	forest area, agricultural land, grazing	the periphery of the lease area	study area Figure
	land, wildlife sanctuary, national park,	has been prepared and	3.1 , Table 3.1
	migratory routes of fauna, water	incorporated with the report.	
	bodies, human settlements and other	The study area lies in Kiul	10 km buffer map
	ecological features should be indicated.	River.	enclosed in Chapter
	Land use plan of the mine lease area	No Ecological Sensitive areas	I of EIA Report.
	should be prepared to encompass	found within 10 km study area.	
	preoperational, operational and post		
	operational phases and submitted.		
	Impact, if any, of change of land use		
	should be given.		
11	Details of the land for any Over	There is no overburden outside	
	Burden Dumps outside the mine lease,	the mine lease area.	
	such as extent of land area, distance		
	from mine lease, its land use ,R&R		
	Issues, if any, should be given.		
12	A Certificate from the Competent	There is no forest land within	
	Authority in the State Forest	the lease area.	
	Department should be provided,		

	confirming the involvement of forest		
	land, if any, in the project area. In the		
	event of any contrary claim by the		
	Project Proponent regarding the status		
	of forests, the site may be inspected by		
	the State Forest Department along with		
	the Regional Office of the Ministry to		
	ascertain the status of forests, based on		
	which, the Certificate in this regard as		
	mentioned above be issued. In all such		
	cases, it would be desirable for		
	representative of the State Forest		
	Department to assist the Expert		
	Appraisal Committees.		
13	Status of forestry clearance for the	No forest land is involved in the	
	broken up area and virgin forestland	lease area, therefore, deposition	
	involved in the Project including	of net present value (NPV) and	
	deposition of net present value (NPV)	compensated Afforestation is	
	and Compensatory afforestation (CA)	not indicated.	
	should be indicated. A copy of the		
	forestry clearance should also be		
	furnished.		
14	Implementation status of recognition of	There is no forest land involved	
	forest rights under the schedule tribes	in the leased out area. Hence,	
	and other traditional forest Dwellers	this act is not applicable for this	
	(Recognition of Forest Rights) Act,	project.	
	2006 should be indicated"		

15	The vegetation in the RF / PF areas in	However, the vegetation details	Chapter III
	the study area, with necessary details, should be given	of the study area are incorporated with the report.	Section 3.1.6 Biological Environment
16	A study shall be got done to ascertain the impact of the Mining Project on wildlife of the study area and details furnished. Impact of the project on the wildlife in the surrounding and any other protected area and accordingly, detailed mitigative measures required, should be worked out with cost implications and submitted.	The details Impacts & there mitigation measures are given in chapter IV of EIA/EMP Report.	Chapter IV
17	Location of National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger / Elephant Reserves / (existing as well as proposed), if any, within 10 km of the mine lease should be clearly indicated, supported by a location map duly authenticated by Chief Wildlife Warden. Necessary clearance, as may be applicable to such projects due to proximity of the ecologically sensitive areas as mentioned above, should be obtained from the Standing Committee of National Board of Wildlife and copy furnished.	No National Parks, Sanctuaries, Biosphere Reserves, Wildlife Corridors, Ramsar site Tiger / Elephant Reserves / (existing as well as proposed) are found within 10 km of the study area. MAP showing eco sensitive zone is attached in Chapter III (Fig 3.4)	Chapter III Section 3.1.6 Biological Environment

18	A detailed biological study of the study	Detailed biological study of	Chapter III
10		core zone and buffer zone	Chapter III
	area [core zone and buffer zone (10 km		S4: 2.1.6
	radius of the periphery of the mine	within 10 km radius of the	Section 3.1.6
	lease)] shall be carried out. Details of	periphery of the mine lease has	Biological
	flora and fauna, endangered, endemic	been carried out for the project.	Environment
	and RET Species duly authenticated,	The same has been incorporated	
	separately for core and buffer zone	in the report.	
	should be furnished based on such		
	primary field survey, clearly indicating		
	the Schedule of the fauna present. In		
	case of any scheduled-I fauna found in		
	the study area, the necessary plan along		
	with budgetary provisions for their		
	conservation should be prepared in		
	consultation with State Forest and		
	Wildlife Department and details		
	furnished. Necessary allocation of		
	funds for implementing the same		
	should be made as part of the project		
	cost.		
19	Proximity to Areas declared as	Proposed project does not come	
	'Critically Polluted' or the Project	under critically polluted area.	
	areas attracting court restrictions for		
	mining operations, should also be		
	indicated and where so required,		
	clearance certifications from the		
	prescribed Authorities, such as the		
	SPCB or State Mining Dept. Should be		
	secured and furnished to the effect that		
	the proposed mining activities could be		

	considered.	
20	Similarly, for coastal projects ,A CRZ	There is no R & R involved in
	map duly authenticated by one of the	this project.
	authorized agencies demarcating	
	LTL.HTL, CRZ area ,location of the	
	mine lease w.r.t CRZ, Coastal	
	features such as mangroves ,if any	
	should be furnished.(Note: The Mining	
	Projects falling under CRZ would also	
	need to obtain approval of the	
	concerned Coastal Zone Management	
	Authority)	
21	R&R Plan/compensation details for the	There is no R & R involved in
	Project Affected People (PAP) should	this project.
	be furnished. While preparing the R&R	
	Plan, the relevant State/National	
	Rehabilitation & Resettlement Policy	
	should be kept in view. In respect of	
	SCs /STs and other weaker sections of	
	the society in the study area, a need	
	based sample survey, family-wise,	
	should be undertaken to assess their	
	requirements, and action programmes	
	prepared and submitted accordingly,	
	integrating the sectoral programmes of	
	line departments of the State	
	Government. It may be clearly brought	
	out whether the village(s) located in	
	the mine lease area will be shifted or	

	not. The issues relating to shifting of		
	village(s) including their R&R and		
	socio-economic aspects should be		
	discussed in the Report.		
22	One season (non-monsoon) [i.e.	Base line study was carried out	Chapter III
	March-May (Summer Season);	for March 2023 to May 2023	
	October-December (post monsoon	Details are provided in	
	season); December-February (winter	EIA/EMP Report.	
	season)] primary baseline data on	The locations of the monitoring	
	ambient air quality as per CPCB	stations were decided on the	
	Notification of 2009, water quality,	basis of prevailing	
	noise level, soil and flora and fauna	meteorological conditions	
	shall be collected and the AAQ and	(Wind direction & wind speed)	
	other data so compiled presented date-	of the study area.	
	wise in the EIA and EMP Report" Site-	The wind rose has been given in	
	specific meteorological data should	chapter III of EIA/EMP Report.	
	also be collected. The location of the	One location has been selected	
	monitoring stations should be such as	in downwind direction within	
	to represent whole of the study area	500 m from the lease boundary.	
	and justified keeping in view the pre-		
	dominant downwind direction and	The location of the monitoring	
	location of sensitive receptors. There	sites has been shown in map.	
	should be at least one monitoring		
	station within 500 m of the mine lease		
	in the pre-dominant downwind		
	direction. The mineralogical		
	composition of PM10, particularly for		
	free silica, should be given.		
23	Air quality modeling should be carried	Air quality modeling detail	
	out for prediction of impact of the	submitted at the time of FEIA.	

	project on the air quality of the area. It		
	should also take into account the		
	impact of movement of vehicles for		
	transportation of mineral. The details		
	of the model used and input parameters		
	used for modeling should be provided.		
	The air quality contours may be shown		
	on a location map clearly indicating the		
	location of the site, location of		
	sensitive receptors, if any, and the		
	habitation. The wind roses showing		
	pre-dominant wind direction may also		
	be indicated on the map.		
24	The water requirement for the Project,	The water requirement for the	Chapter –II
	its availability and source should be	project is 4.90 KLD for	Section 2.7 Water
	furnished. A detailed water balance	drinking, dust suppression and	Section 2.7 Water
	should also be provided. Fresh water	green belt development.	Requirement
	requirement for the Project should be	A detailed water balance is	
	indicated.	being provided in the report.	
		being provided in the report.	
25	Necessary clearance from the	Water requirement will be	Chapter II
	Competent Authority for drawl of	fulfilled by private water tanker.	
	requisite quantity of water for the	So, no clearance is required.	
	Project should be provided.		
26	Description of water conservation	The project do not consume any	
	measures proposed to be adopted in the	process water except for	
	Project should be given. Details of	drinking, dust suppression &	
	rainwater harvesting proposed in the	plantation. Plantation is	
	project, if any required should be	proposed, which will increase	
	provided.	the water holding capacity &	
-			

		help in recharging of ground	
		water.	
		No artificial rainwater	
		harvesting is proposed for the	
		present project in lease area,	
		however if any such project	
		proposed by State Government	
		PP will help out for the above.	
27	Impact of the Project on the water	Mining activity will be done on	Chapter II
	quality, both surface and groundwater,	Dry Bed of River so there is no	
	should be assessed and necessary	impact on surface water.	
	safeguard measures, if any required,	Mining will be up to 1 m below	
	should be provided".	ground level or above the	
		ground water table whichever	
		comes first. This will not	
		intersect the ground water table.	
28	Based on actual monitored data, it	The detailed impact and control	
	may clearly be shown whether working	measure w.r.t the quality of	
	will intersect groundwater. Necessary	water in the surrounding area is	
	data and documentation in this regard	discussed under Chapter 4.	
	may be provided. In case the working		
	will intersect groundwater table, a		
	detailed Hydro Geological Study		
	should be undertaken and Report		
	furnished. The Report inter – alia, shall		
	include details of the aquifers present		
	and impact of mining activities on		
	these aquifers. Necessary permission		
	from Central Ground Water Authority		
	•		
	for working below ground water and		

	for pumping of ground water should		
	also be obtained and copy furnished.		
29	Details of any stream, seasonal or	The project site lies on Kiul	
	otherwise, passing through the lease	river. No diversion is proposed.	
	area and modification / diversion		
	proposed, if any, and the impact of the		
	same on the hydrology should be		
	brought out.		
30	Information on site elevation, working	The mining will be done as per	
	depth, groundwater table etc. Should	the approved mining plan and 1	
	be provided both in AMSL and bgl. A	meter bgl whichever is comes	
	schematic diagram may also be	first.	
	provided for the same.		
31	A time bound Progressive Greenbelt	Plantation/afforestation will be	Chapter VIII
	Development Plan shall be prepared in	done as per program i.e along	Section 8.2
	a tabular form (indicating the linear	the road sides and near civic	
	and Quantities coverage, plant species	amenities, as per mine plan.	
	and time frame) and Submitted keeping	Post plantation, the area will be	
	in mind the same will have to be	regularly monitored in every	
	executed up front on commencement	season for evaluation of success	
	of the Project. Phase-wise plan of	rate.	
	plantation and compensatory	List of Plant species selected for	
	afforestation should be charted clearly	green belt is detailed in the EIA	
	indicating the area to be covered under	report.	
	plantation and the species to be	The plant species selected for	
	planted. The details of plantation	green belt have a greater	
	already done should be given. The	ecological value and are of good	
	plant species selected for green belt	utility value to the local	
	should have greater ecological value	population. The plant species	
	and should be of good utility value to	are selected by giving emphasis	

	the local population with emphasis on	on local and native species and	
	local and native species and the species	the species which are tolerant to	
	which are tolerant to pollution.	pollution	
32	Impact on local transport infrastructure	The projection has been done	Chapter IV
	due to the Project should be indicated.	based on the mineral	
	Projected increase in truck traffic as a	transportation.	
	result of the Project in the present road	The details of traffic analysis	
	network (including those outside the	are discussed in the report.	
	Project area) should be worked out,	are discussed in the report.	
	indicating whether it is capable of		
	handling the incremental load.		
	Arrangement for improving the		
	infrastructure, if contemplated		
	(including action to be taken by other		
	agencies such as State Government)		
	should be covered. Project Proponent		
	shall conduct Impact of Transportation		
	study as per Indian Road Congress		
	Guidelines.		
33	Details of the onsite shelter and	A temporary rest shelter will be	Chapter II
	facilities to be provided to the mine	provided for the workers near to	
	workers should be included in the EIA	the site with provisions of	
	Report	water, first aid facility,	
		protective equipments, etc.	
		Details are given in the	
		EIA/EMP Report.	

34	Conceptual post mining land use and	Conceptual plans and Sections	
	Reclamation and Restoration of mined	are given in Chapter 2.	
	out areas (with plans and with adequate		
	number of sections)should be given in		
	the EIA report.		
35	Occupational Health impacts of the	Occupational health impact	Chapter VII
	Project should be anticipated and the	mainly is expected due air	
	proposed preventive measures spelt out	pollution due to fugitive dust	
	in detail. Details of pre-placement	emission because of movement	
	medical examination and periodical	of vehicles. However	
	medical examination schedules should	appropriate mitigation measures	
	be incorporated in the EMP. The	for air pollution control have	
	project specific occupational health	been given in the report,	
	mitigation measures with required	discussed in Chapter-4.	
	facilities proposed in the mining area	Each labour will undergo pre-	
	may be detailed.	placement medical examination.	
		Thereafter periodical heath	
		check up will be arranged as	
		stated in the report. About 4.0	
		lakh has been earmarked for	
		occupational health.	

36	Public health implications of the Project and related activities for the population in the impact zone should be systematically evaluated and the proposed remedial measures should be detailed along with budgetary	The proposed project being a small scale semi-mechanized mining project, there will be hardly any process related health implication on the population of the nearby	Chapter VII
	allocations.	villages except fugitive dust emissions due to transportation.	
		Budgetary allocation is given in	
		Chapter-VIII.	
37	Measures of socio economic	Socio-economic significance	Chapter VI
	significance and influence to the local	provided to the local	
	community proposed to be provided by	community i.e. to the nearby	
	the Project Proponent should be	villagers is given in the	
	indicated. As far as possible,	EIA/EMP Report.	
	quantitative dimensions may be given		
	with time to time for implementation.		
38	Detailed environmental management	The detailed environmental	Chapter VIII
	plan (EMP) to mitigate the	management plan to mitigate	
	environmental impacts which, should	the environmental impacts has	
	inter-alia include the impacts of change	been mentioned in of the	
	of land use, loss of agricultural and	EIA/EMP Report.	
	grazing land, if any, occupational		
	health impacts besides other impacts		
39	specific to the proposed Project Public Hearing points raised and	This is a draft EIA report.	
37	Public Hearing points raised and commitment of the Project Proponent	Public hearing is yet to be	
	on the same along with time bound	conducted.	
	Action Plan with budgetary provisions	conducted.	
	to implement the same should be		

	provided and also incorporated in the			
	final EIA/EMP Report of the Project.			
40	Details of litigation pending against the	No litigation is pending against		
	project, if any, with direction /order	the project.		
	passed by any Court of Law against the			
	Project should be given.			
41	The cost of the Project (capital cost and	The capital cost of 3.36 lakh & Chapter IX		
	recurring cost) as well as the cost	5.5 lakh as recurring cost has		
	towards implementation of EMP	been earmarked for EMP.		
	should be clearly spelt out.	Chapter IX table no. 9.2		
42	A Disaster management Plan shall be	A Disaster management Plan	Chapter VII	
	prepared and included in the EIA/EMP	has been given in EIA report.	-	
	Report".			
43	Benefits of the Project if the Project is	2% of the total cost of the		
	implemented should be spelt out. The	project has been earmarked		
	benefits of the Project shall clearly	towards the Enterprise Social		
	indicate environmental, social,	Commitment which will be		
	economic, employment potential, etc.	used for the development of		
		village.		
44	Resides the above the below mentione	d ganaral points are also to be fol	llowed.	
44	besides the above, the below mentione	ned general points are also to be followed:-		
a	All documents to be properly	All the documents to be		
	referenced with index and continuous	properly referenced with index		
	page numberings.	and continuous page		
		numbering.		

Where data are presented in the Report	Compiled With EIA report.
especially in Tables, the period in	
which the data were collected and the	
sources should be indicated.	
Project Proponent shall enclose all the	Compiled With EIA report.
analysis/testing reports of water, air,	
soil, noise etc. using the	
MoEF&CC/NABL accredited	
laboratories. All the original	
analysis/testing reports should be	
available during appraisal of the	
Project.	
Where the documents provided are in a	Compiled With EIA report.
language other than English, an English	
translation should be provided.	
The Questionnaire for environmental	Compiled With EIA report.
appraisal of mining projects as devised	
earlier by the Ministry shall also be	
filled and submitted.	
While preparing the EIA report, the	Compiled With EIA report.
instructions for the Proponents and	
instructions for the Consultants issued	
by MoEF vide O.M. No. J-	
11013/41/2006-IA.II (I) dated 4th	
August, 2009, which are available on	
the website of this Ministry, should be	
followed.	
	especially in Tables, the period in which the data were collected and the sources should be indicated. Project Proponent shall enclose all the analysis/testing reports of water, air, soil, noise etc. using the MoEF&CC/NABL accredited laboratories. All the original analysis/testing reports should be available during appraisal of the Project. Where the documents provided are in a language other than English, an English translation should be provided. The Questionnaire for environmental appraisal of mining projects as devised earlier by the Ministry shall also be filled and submitted. While preparing the EIA report, the instructions for the Proponents and instructions for the Consultants issued by MoEF vide O.M. No. J-11013/41/2006-IA.II (I) dated 4th August, 2009, which are available on the website of this Ministry, should be

g	Changes, if any made in the basic	Agreed	
	scope and project parameters (as		
	submitted in Form-I and the PFR for		
	securing the TOR) should be brought		
	to the attention of MoEF&CC with		
	reasons for such changes and		
	permission should be sought, as the		
	TOR may also have to be altered. Post		
	Public Hearing changes in structure		
	and content of the draft EIA/EMP		
	(other than modifications arising out of		
	the P.H. process) will entail conducting		
	the PH again with the revised		
	documentation.		
h	As per the circular no. J-	This is new case for Mining. No	
	11011/618/2010-IA. II (I) dated	certified compliance is required.	
	30.5.2012, certified report of the status		
	of compliance of the conditions		
	stipulated in the environment clearance		
	for the existing operations of the		
	project, should be obtained from the		
	Regional Office of Ministry of		
	Environment, Forest and Climate		
	Change, as may be applicable.		
i	The EIA report should also include (i)	Compiled With EIA report.	
	surface plan of the area indicating		
	contours of main topographic features,		
	drainage and mining area, (ii)		
	geological maps and sections and (iii)		
	sections of the mine pit and external		

CHAPTER-I	INTRODUCTION
Project: Sand Mining Project on Kiul River at Jamui	Kiul Block 15 Sand Ghat At Mauza – Satgama,

Block - Jamui, District- Jamui, (Bihar)

dumps, if any, clearly showing the land	
features of the adjoining area.	

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

2.0 TYPE OF PROJECT

The project is proposed is for sand block Jamui Kiul Block 15 for the excavation of sand from the bed of river Kiul. The proposed project is opencast semi-mechanized/OTFM mining project.

2.1 NEED FOR THE PROJECT

The project site lies on Kiul River. The river get recharged by the rain water and carries sediment consisting of sand etc during monsoon season, generally.

Sand is used widely in the construction industry. It is usually mixed with cement and other ingredients to create mortar for building. It is also used in agriculture, as sandy soils are ideal for crops such as watermelons, peaches and peanuts. Sand is also used in Aquaria as it makes a low cost aquarium base material. This project will also provide employment to local people helping them earn livelihood.

2.2 LOCATION DETAILS

The Proposed Sand Mining Project is located on Kiul River at Jamui Kiul Block 15, Sand Ghat at Mauza – Satgama, Block -Jamui, District- Jamui, (Bihar).

The proposed mining is a cluster of 03 mining lease area of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 over an combined area of 135.3 Ha is for river bed sand mining on Kiul River at Dist-Jamui, Bihar.

Cluster Situation: As per District Survey Report Jamui the Proposed Sand Ghats of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 are comes in cluster situation whose combined cluster area is 135.3 ha. All the lease area of homogeneous minerals is coming within 500 m radius from each other confirming a cluster situation.

The address of the proponents is given below(As per DSR):

Sand Block name	Area (Ha)	Production
Jamui Kiul Block 13	69.9	388104 TPA
Jamui Kiul Block 14	51.8	376980 TPA
Jamui Kiul Block 15	17.6	379452 TPA
Total	135.3	11,44,536 TPA

 \mathbf{C}

D

86°14'37.02"E

86°14'30.63"E

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Pillar No	Latitude (N)	Longitude (E)
A	24°57'5.82"N	86°14'39.77"E
В	24°56'44.77"N	86°14'48.07"E

24°56'45.75"N

24°57'2.46"N

Table: 2.1 Mine lease Pillar Co-ordinates (Jamui Kiul Block 15)

The mine site is well connected via an approach road of approx. 640 Metres to Metalled Road. NH-333A: Approx. 0.80 KM towards West direction. Jamui Station, approx. 2.52 km towards NE direction.

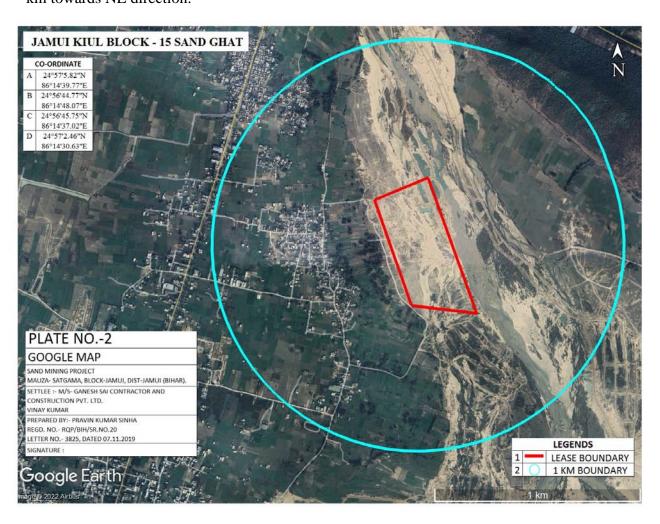


Figure 2.1:- Pillar Coordinate map of Jamui Kiul Block 15

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

2.2.1 Lease / Block Area

The proposed project is Open Cast Semi-Mechanized Mining of Sand with a proposed production is given below in tabular form.

Block	Area	Khata No	Khasra No	Production	Auction Cost
Jamui Kiul	17.6	220	1150	217536 TPA	1,74,24,000/-
Block 15	17.0	220	1130	217330 11 A	1,74,24,000/-
Total				217536 TPA	1,74,24,000/-

As per MoEF, New Delhi Gazette dated 14th September 2006 and amended thereof, the proposed mining project is categorized as Category 'B-1'. The estimated project cost for the proposed project is given in above table.

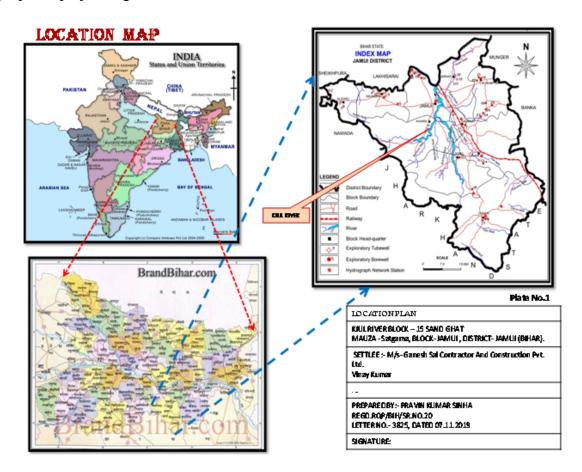


Figure 2.2:- LOCATION MAP OF THE PROJECT SITE

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza - Satgama, Block - Jamui, District- Jamui, (Bihar)

TOPOGRAPHY & GEOLOGY 2.3

2.3.1 Topography

Most of the part of the district has hilly topography. Western portion of Jamui like Sikandra Jamui a little part of Jamui has plain area. Sikandra block is situated in alluvial zone. A sizeable part of the district comprise plains which are paddy-growing lands. Sourthern part of the district is covered with hills and forest characteristically reminiscent of the Chhotanagpur plateau in physical features. Hills of the district are considered to be the out – laying extension of Vindhya Range. Southwest part of the district has another block of hills known as Gidheswar Pahar.

Source: Mining plan

2.3.2 GEOMORPHOLOGY

The district has a diverse geomorphology ranging from hills to flood plains. The major geomorphic units are rocky upland, plateau / pediplain and alluvial plain.

There are three major hilly tracts, namely, a) the hills of Batia-Jhajha area having strike in east-west direction lying in the northern fringe of Chakai plateau, b) the Gidheshwar hills in the western part of the district and c) the Kharagpur hills lying in north-eastern part of the district. Attaining a height of 475 m amsl in Barhat block.

Plateau representing oldest table land in the area is Chakai plateau. The pediplains having rolling topography has relief up to 300 m amsl. It extends from Batia to the south of Kharagpur hills and comprises residual soil overlain by mixture of sheet wash deposits.

Alluvial plain is represented by Jamui terrace. It is made up of sediments derived from the denudation of Chakai plateau and Kharagpur hill. The thickness of alluvium in the northern part is about 80 m, while in southern part it reduces to 10 m. Other landforms such as escarpment, inselberg, valley fills are also present.

Source: https://cgwb.gov.in/District Profile/Bihar/Jamui.pdf

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

2.3.3 REGIONAL GEOLOGY

Geologically, it represents nearly two third of Bihar is under cover of Ganga basin composed of alluvium and masks the nature of basement rocks.

Showing the Geological Succession and their geographic distribution

Table 2.2 Showing the Geological Succession and their Occurrences distribution

Age	Geology	Occurrences	
Quaternary	Alluvial Deposits (Sand, Clay, Silt,	North Bihar Plain & Central Bihar Plain	
	Fragments)	& Central Billar Fram	
Tertiary	Sand Stones & Clay Stones	North Champaran Hills	
Gondwana	Coal Measures, Forming a series of Small outlier basins	Banka District	
Vindhyans	Sandstones, Shales, Limestones, etc.	Parts of Bahbhua and Rohtas dist	
Satpura	Schist, Phyllite, Quartzite	Part of Aurangabad, Gaya, Nawada, Nalanda, Sheikhpura and Munger District	
Proterozoic	Mica Schist, amphibolites, quartzite, granite, dolerite and pegmatite	Nawada, Jamui and Banka	
Archaean	Gneisses, Granites, Schists, Phyllites, quartzite, amphibolites & intrusive all metamorphosed sedimentary and igneous rocks	Part of Aurangabad, Gaya, Nawada, Jamui, Banka and Bhagalpur	

Source: Mining Plan

2.3.4 LOCAL GEOLOGY OF THE AREA

Kiul River is a tributary of Ganges. Kiul River originates in Giridih of Jharkhand and flows through Lakhisarai, Sheikhpura and Jamui districts of the Indian state of Bihar and joins Harohar river in the Diara region. Kiul originates from the Tisri Hill Range

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

in Kharagdiha police station area of Giridih district. After forming the boundary of the district for a short distance it enters Jamui district through a narrow gorge near the Satpahari hill. It first flows in an easterly direction close to the southern base of the Girdheswari Hills. It turns northward at their eastern extremity and passes near the town of Jamui. Two miles south of Jamui it is joined by Barnar, below this point it receives the Alai, a mountain stream and near Jamui railway station it is joined by the Anjan. It then flows north-east up to Lakhisarai, It passes below the railway bridge between Kiul junction and Lakhisari station and is joined a few miles north of that place, near Rahuaghat, by the Harohar (Halahar or Harhobar), a continuation of the Sakri River. After this it turns due east and falls into the Ganges near Surajgarha. Until it meets the Harohar the Kiul has broad sandy bed and in some places is as much as half a mile wide, though it contains very little water in summer.

The litho units encountered in the riverbed and surrounding areas belongs to the Shivalik super groups. The size of the sediments towards the source i.e. host rock is course and at the tale end of the river the grain size is reduced to smaller sizes resulted in the formation of clay beds. The following sequences have been observed in the area, i.e. Top soil/ Alluvium followed by sand deposition.

Source: Mining Plan

2.3.5 CLIMATE

The average annual rainfall of district is 1107.3 mm. About 80% of the rainfall is received during June to September by south-west monsoon. The climate of Jamui district represents a transition between dry and extreme climates of the northern India and warm and humid of West Bengal. In the summer season the diurnal temperature rises up to 42°C, while in winter season it drops to as low as 2°C.

Source: https://cgwb.gov.in/District_Profile/Bihar/Jamui.pdf

2.4 GEOLOGICAL RESERVE

The geological reserves have been each stretches & for individual blocks. Geological reserves have been completed through cross sectional area method. The area of each section line is multiplied by strike influence to get the volume.

Proved Mineral Reserves (111): All quantities of sand occurring up to depth of 1m from surface has been considered as proved reserves.

Table-2.2:- Proved Mineral Reserves

Classification	Code	Quantity of Sand
A) Mineral Reserves		Cum
1) Proved Mineral Reserves	111	176000
Total		176000

Total Geological Reserve = 176000 cum. or 362560 tonnes.

Source: Mining Plan

2.4.1 Mineable Reserves:

Mineable reserves have been computed up to 1m depth from surface. The volume multiplied by bulk density (2.06 kg/m3) to get the tonnage.

The minerals excavated from the river bed will be replenished gradually during the monsoon season every year. And the area pertaining to paleochannels of the river will be leveled & restored back.

Table-2.4:- Summary of minable reserves of Jamui Kiul Block 15 Sand Ghat as below (the bulk density multiply by 2.06)

Bench Level (mRL)	Length (m)	Width (m)	Depth (m)	Volume (cum)	Tonnes
74 - 73	604	267	1	161268	332212
Total				161268	332212

Total Mineable Reserve = 161268 CUM or 332212 Tonnes

Table No-.2.5 Classification Mineral Reserves:

Sand Ghat	Area (Hect)	Geological Reserves (m3)	Mineable Reserves (m3)	Annual Mineable Permitted Reserve As per LoI (m3)
Jamui Kiul Block 15	17.6	176000	161268	105600

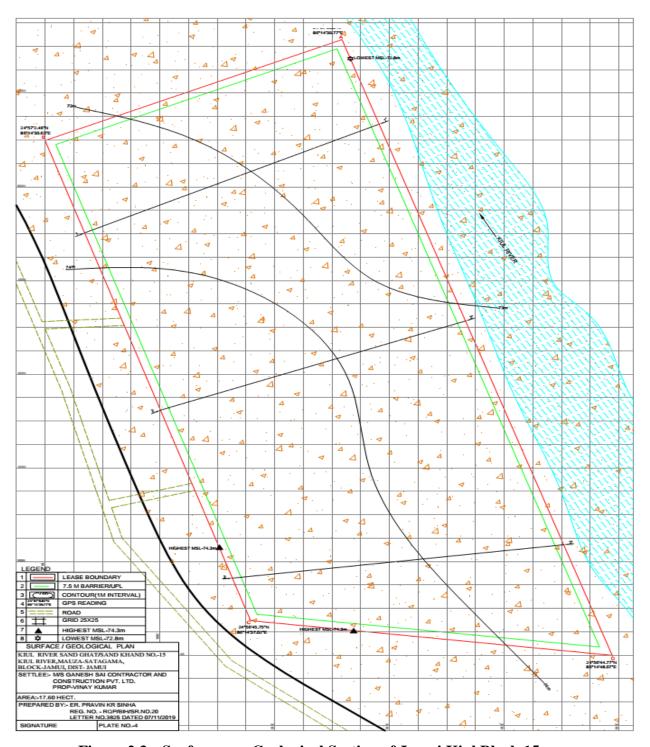


Figure 2.3:- Surface cum Geological Section of Jamui Kiul Block 15

2.4.2 Type of Mining

- •Mining will be done as per the guidelines of Bihar Mineral (Concession Prevention of illegal Mining Transportation & Storage) Rules, 2019, SSMG -2016, and EMGSM 2020.
- •This is an open-cast mining project. The operation will be semi-mechanized/OTFM with use of excavators/JCBs truck /tractors combination or Manually etc. The sand will be collected in its existing form.
- •Sand Mining will be carried out only upto a depth of 1 m bgl or above ground water level (whichever is less), for river bed block.
- •No drilling /blasting are required as the material is loose in nature.
- •Proper benching of 1.5 m height and 6 m width will be maintained for mining blocks as per guideline M.M.R-12019, under rule 115(1).
- •Mining will be done only during the day time and completely stopped during the monsoon season.

2.4.3 Year Wise Production Schedule:

The bench wise annual exploitation of sand from Jamui Kiul Block 15 are given below:

Table 2.3 Year wise Production Details of Jamui Kiul Block 15

YEAR	ROM sand (cum)
1 st Year	105600
2 nd Year	105600
3 rd Year	105600
4 th Year	105600
5 th Year	105600

The annual extractable RBM comes to 105600 CUM or 217536 Tonnes. It will be replenished after rainy season every year.

Source: Mining Plan

2.5 Conceptual Mining Plan

Mine Applied Area will be worked for Jamui Kiul Block 15 Sand Ghat. However, as the digging depth will be restricted to 1.0 m only. This will be further replenished during rainy season. Sand Ghat will be worked systematically as the width is limited while length is much more. As the lease period is only 5 (Five) years, some of the area will be left unworked at the end of lease period.

- (i) Final Slope Angle to Be Adopted: River bank side will be protected by working in dry part of the river and by leaving safety distance of the width of the river of 5 meter. Bank side natural slope will not be disturbed. This will prevent collapse of bank and erosion. However, the height of the bank with respect to river bed is varying from 3-4 meters.
- (ii) During plan period workings will be carried out in the Sand Ghat at a time of the Applied Area simultaneously. Scattered workings will ensure safety, remove congestion of vehicles and will have better control and management.
- (iii)Ultimate Capacity of Dumps: There will be no OB removal / during the plan period. Therefore no proposal has been envisaged for its separate dumping. No outside material will be filled up in the extracted zone.

2.6.0 Anticipated life of mine

There is as such no specific life of the mine as the area under reference is inactive part of river bed of the river and its pale channels and whatever quantity of minor minerals are extracted from the Applied Area during five year; almost equal to extracted quantity of the same are replenished every year and the river bed area will be leveled & restored back.. However, as lease has been granted for 5 years, mining will be done for the allotted time.

2.6.1 Waste –disposal arrangement

No top soil is present in the mining area as it is riverbed. Small amount of domestic waste will be generated by the workers at the site, which will be disposed off through proper municipal way. No other waste generation is expected. No waste will be thrown into the streams or left on the banks. Separate bins will be kept within the lease area for domestic wastes.

2.7 GENERAL FEATURES

2.7.1 Land-use pattern

The mine lease area is flat river bed and river banks. There is no forest land or agriculture land in the mine lease area. The entire mining lease lies within River.

2.7.2 Surface drainage pattern

The mine site lie on the dry bed of Kiul River so there will be no impact on surface water.

PROJECT SITE River/Water Bodies Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Musez-Satgama, Block 1-Jamui, (Bihar) River/Water Bodies Sand Scrub Land

Fig-2.4, Drainage map

2.7.3 Man power requirement

The manpower requirement for the proposed project will be around 19 who will be utilized for excavation & loading of minerals into trucks or tractor-trolleys. Break-up of Man-power requirement is given in below **Table 2.8.**

Table 2.4 Manpower Requirement

S. No.	Category	Numbers
1.	Administration	01
2.	Supervisor	02
3.	Skilled	04
4.	Un-skilled	12
	TOTAL	19

2.7.4 Water supply

Water requirement for the proposed project will be provided for the workers for drinking & domestic purpose. Water will also be provided for dust suppression. Fresh water will be only used for drinking purpose. The break up for water requirement is given below:

Table 2.5 Water requirement

Activity	Calculation	Round off Figure in KLD	
Drinking	@ 10 lpcd per labor 10*19/1000= 0.19 KLD	0.19	
Dust Suppression	Total approach road to be water sprinkled = 220 m 640 m*6m*0.5 *2 times 3840/1000= 3.84KLD	3.84	
Plantation	176 plant (during plan period) @ 5 L/per plant= 176*5lts= 880/1000= 0.88 KLD	0.88	
	4.91~4.90 KLD		

The water will be supplied from available sources from nearby village.

2.7.5 Site services

The following facilities/amenities will be extended by the mine management under site services:

- A temporary rest shelter will be provided for the workers near to the site for rest.
- Provisions will also be made for following in the rest shelter:
- ❖ First aid box will be made available at the site. In emergency worker.

- Sanitation facility i.e. septic tank or community toilet facility will be provided for the workers.
- Mask and gloves distribution to the workers.

2.7.6 Extent of mechanization

The operation will be open cast semi- mechanized/OTFM with use of excavators/JCBs truck /tractors combination or Manually etc. The sand will be collected in its existing form.

2.7.7 Statutory requirements

It is accepted that effective resource management cannot be done in isolation. The proponent therefore vigorously pursues approaches towards coordination and integration where possible, so as to lead to coordinated regulatory systems.

Various acts dealing with matters relating to the conservation and protection of the environment and which a holder of a mining authorization must also take cognizance of include inter alia, the following:

- Bihar Minor Mineral Concession Rule, 2014 amended till date.
- The Mines Act, 1952.
- The Mines and Mineral (Development and Regulation) Act, 1957.
- Mines Rules, 1955.
- Mineral Concession Rules, 1960.
- Mineral Conservation and Development Rules, 1988.
- The Water (Prevention and Control of Pollution) Act, 1974.
- The Air (Prevention and Control of Pollution) Act, 1981.
- The Environment (Protection) Act, 1986.
- The Forest (Conservation) Act, 1980.
- The Wildlife (Protection) Act, 1972.

3.0 General

The main objective of describing the environment which may be potentially affected, are i) to assess present environmental quality and the environmental impacts and ii) to identify environmentally significant factors that could preclude mine development. Mining activities affect the existing status of environment at site. In order to maintain the existing environmental status at mining site it is essential study existing environmental status and assess the impact of upcoming project on various environmental components. This chapter gives idea of description of environment status of the study area and this will be helpful for assessment of impact on the environment due to proposed mining activities. Baseline environmental status in and around proposed mining lease area describe the existing conditions of air, noise, water, soil, biological and socio-economic environment. The proposed project as a center, a radial distance of 10 km is considered as study area for baseline data collection and environmental monitoring. The data was collected for various environmental attributes so as to compute the impacts that are likely to arise due to proposed development activity.

3.0.1 Study area & study period

The proposed project as a center, a radial distance of 10 km is considered as study area for baseline data collection and environmental monitoring. The baseline environment quality was carried out over a radial distance of 10 km around the mining lease area during the months of March 2023 to May 2023.

3.0.2 Methodology

Base line attributes like ambient air, water, meteorology, noise, Soil, Ecology and Biodiversity & Socio Economy condition were collected as per approved term of reference. Secondary data was also collected from various government department as well as local people. Methodology adopted in this study is as follows.

- ✓ By setting up meteorological station near project site
- ✓ Collection of site specific meteorological data at the mine site.
- ✓ Installation of respiratory dust samplers (for PM_{10} , $PM_{2.5}$) at different location in the study area for the collection of primary air pollutant and analyze the existing air conditions.
- ✓ Carrying out a detailed biological study for the Core and Buffer Zone

- ✓ Soil sample were collected from various location in the study area to analyze physical and chemical characteristics for assessment of impact on soil.
- ✓ Surface and Ground water samples were also collected from the various locations in the study area for analysing the existing water quality in the study area.
- ✓ Noise measurement has been done in core zone as well as buffer zone to analyze the existing situation in the study area.
- ✓ Literature review that includes identification of relevant data and articles from various publications, various government agencies and other sources for socio-economy, demography has been done with primary data collection in 10 km of the study area.
- ✓ Existing pollution load has been also identified in the buffer zone due to similar activities.
- ✓ Accordingly, field studies were carried out during the study period (March 2023 to May 2023) to establish the existing baseline conditions.

3.1 Land Environment of the Study area

Land use

Land use involves he management and modification of natural environment or wilderness in to built environment such as settlements and semi-natural habitats such as arable fields, pastures, and managed woods. It also has been defined as "the total of arrangements, activities and inputs that people undertake in a certain land cover type.

Land cover

Land cover is the physical material at the surface of the earth. Land covers include grass, asphalt, trees, bare ground, water, etc. Earth cover is the expression used by ecologist Frederick Edward Clements that has its closest modern equivalent being vegetation. The expression continues to be used by the Bureau of Land Management.

To assess the land use pattern surrounding the 10 km radius of the site, a detailed study was carried out. The land use pattern study reveals that the 10 km environs is predominantly agricultural land. The land use details are given in **Table- 3.1** and shown in **Figure-3.1**.

Table 3.1: Land Use Cover of the Project Study Area

Landuse Type	Area (Ha)
Scrub Land	1417.86
Forest	1952.22
River/Water Bodies	326.31
Settlement	4932.28
Vegetation	301.76
Agriculture	28863.04
AREA	37793.47

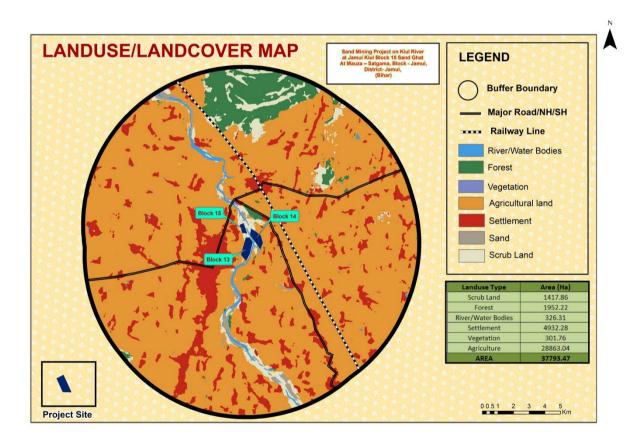


FIGURE 3.1: LAND USE COVER OF THE PROJECT STUDY AREA

3.2 Water Environment

Water quality assessment is one of the essential components of EIA study. Such assessment helps in evaluating the existing health of water body and suggesting appropriate mitigation measures to minimize the potential impact from development projects. Water quality of

ground water has been studied in order to assess proposed water-uses in construction, drinking, cooling and horticulture purpose.

The water quality at the site and other locations within the 10 km impact zone was monitored during March 2023 to May 2023. The water sampling locations marked within the study are presented in **Table 3.2** and **Figure 3.2** and the result of the monitoring and analysis are presented in the **Table 3.3** showing Water Quality Monitoring Locations marked within the Study Area.

Table 3.2: Water Sampling Locations

Water (Ground) Monitoring Locations			
GW 1	Katauna village	1.0 km E	
GW 2	Ratanpur	6.87 Km SE	
GW 3	Mallehpur	3.10 Km N	

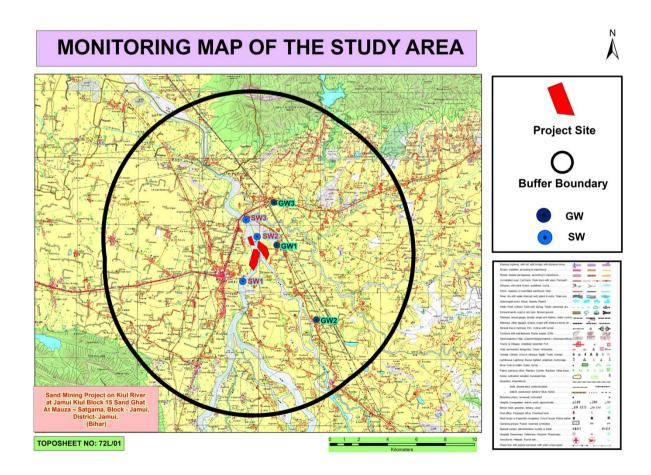


Figure 3.2 Water Sampling Location Map

Table 3.3 Ground Water Quality Monitoring Result

S.N.	Parameters	GW1	GW2	GW3	Acceptable/Permissible Limit
1	pH Value	7.6	8.1	7.9	(IS 10500:2012) 6.5-8.5/No relax
2	EC, μS/cm	593	681	608	
3	Turbidity NTU	<1	<1	<1	1/5
4	TDS mg/l	397	456	406	500/2000
5	TSS mg/l	<1	<1	<1	
6	Total Hardness as CaCO ₃	245	288	228	200/600
0	mg/l	243	288	228	200/600
7	Chloride as Cl mg/l	68.2	86.1	68.5	250/1000
8	Total Alkalinity mg/l	137	148	144	200/600
9	Sulphates as SO ₄ mg/l	22.3	32.6	20.6	200/400
10	Nitrates as NO ₃ mg/l	37.1	39.1	33.9	45/No relax.
11	Fluoride as F mg/l	1.15	0.95	1.10	1/1.5
12	Iron as Fe mg/l	0.23	0.07	0.11	1.0/No relax.
13	Zinc as Zn mg/l	1.1	0.80	1.1	5/15
14	Calcium as Ca mg/l	59.3	68.1	62.3	75/200
15	Magnesium as Mg,	23.5	28.6	17.6	30/100
16	Sodium as Na mg/l	18.4	20.2	25.3	
17	Potassium as K mg/l	0.7	2.1	3.9	
18	Cadmium as Cd mg/l	BDL	BDL	BDL	0.003/No relax
19	Copper as Cu mg/l	BDL	BDL	BDL	0.05/1.5
20	Nickel as Ni mg/l	BDL	BDL	BDL	0.02/No relax.
21	Lead as Pb mg/l	BDL	BDL	BDL	0.01/No relax.
22	Mercury as Hg mg/l	BDL	BDL	BDL	0.001/No relax.
23	T Chromium as Cr	BDL	BDL	BDL	0.5/No relax.
24	Arsenic as As mg/l	BDL	BDL	BDL	0.01/0.05
25	Cyanide as mg/l	BDL	BDL	BDL	0.05/No relax.
26	Phenolic compound mg/l	BDL	BDL	BDL	0.001/0.002
27	Oil & grease	<1	<1	<1	
28	Total Coliform MPN/100ml	Absent	Absent	Absent	Shall not be detectable in any 100 ml sample
29	SAR	0.51	0.52	0.72	-
ı		I	l .	i .	

Observation:

Analysis of results of ground water reveals the following: -

• pH varies from 7.9 at to 8.1

- Total hardness varies from 228 mg/l to 288 mg/l.
- Total dissolved solids vary from 397 mg/l to 456 mg/l.

The ground water from all sources remains suitable for drinking purposes as all the constituents are within the limits prescribed by drinking water standards promulgated by Indian Standards IS: 10500.

3.2 (b) SURFACE WATER

Three surface water samples were collected from the study area. The location of surface water samples is given in Table 3.3 (iii). The physio-chemical analysis of the these samples are given in the Table 3.3 (iv)

Table 3.4: Surface water sampling locations

Surface Water Monitoring Locations					
SW1	Upstream Near village Garo Nawada	2.0 Km SW			
SW 2	Project site				
SW 3	Downstream near village Patauna	2.33 NW			

Table 3.5: Physio-chemical properties of surface water

S.No.	Parameters	SW1 Project site	SW2 Upstrea m	SW3 Downstream	Acceptable/Permissible Limit (IS 10500:2012)
1	pH Value	7.4	7.3	7.4	6.5-8.5/No relax
2	Temperature ⁰ C	31.6	32.6	31.1	
3	Turbidity	4.0	5.8	3.6	
4	EC, μS/cm	270	278	334	
5	Sulphates as SO ₄ mg/l	23.3	28.3	24.6	200/400
6	Nitrates as NO ₃ mg/l	3.8	3.1	3.6	45/No relax.
7	TH as CaCO3 mg/l	105	122	124	200/600
8	Chloride as Cl mg/l	51.2	54.2	58.2	250/1000
9	Fluoride as F mg/l	0.27	0.34	0.41	1/1.5
10	C.O.D mg/l	22.0	28.0	26.0	
11	Iron as Fe mg/l	0.26	0.23	0.36	1.0 /No relax.
12	D. O. mg/l	7.1	5.5	5.8	
13	TDS mg/l	173	186	214	500/2000
14	B.O.D. 5 days mg/l	7.6	12.1	7.8	
15	Calcium as Ca mg/l	21.2	24.3	26.5	75/200
16	Magnesium as Mg,	12.6	14.8	13.6	30/100
17	Arsenic as As mg/l	BDL	BDL	BDL	0.01/0.05
18	Lead as Pb mg/l	BDL	BDL	BDL	0.01/No relax.
19	Copper as Cu mg/l	BDL	BDL	BDL	0.05/1.5
20	Zinc as Zn mg/l	BDL	BDL	BDL	5/15
21	Manganese mg/l	BDL	BDL	BDL	-
22	T Chromium as Cr	BDL	BDL	BDL	0.5/No relax.
23	Sodium as Na mg/l	13.5	13.6	19.2	
24	Potassium as K mg/l	1.80	2.1	2.8	

25	Total Alkalinity mg/l	37	44	54	200/600
26	Phosphate as PO ₄ mg/l	0.05	0.26	0.34	-
27	Nitrite (as NO ₂), mg/l	0.19	0.24	0.22	-
28	TSS, mg/l	9.8	25.4	10.1	-
29	Fecal Coliform MPN/100ml	480	1280	760	Shall not be detectable
30	Total Coliform MPN/100ml	600	1450	820	Shall not be detectable
31	Cadmium as Cd mg/l	BDL	BDL	BDL	0.003/No relax
32	Mercury as Hg mg/l	BDL	BDL	BDL	0.001/ No relax.
33	Nickel as Ni mg/l	BDL	BDL	BDL	0.02/No relax.
34	Cyanide as mg/l	BDL	BDL	BDL	0.05/No relax.

3.2.1 Sampling frequency

Parameters for analysis of water quality were selected based on the utility of the particular source of water as per CPCB guidance. Surface water quality was monitored for parameters as per Methods of Monitoring & Analysis published by CPCB and it was rated according to the CPCB Water Quality Criteria against A, B, C, D & E class of water. Water samples were collected as Grab water sample from sampling location for complete physico-chemical and bacteriological tests respectively. The samples were analyzed as per standard procedure / method given in IS: 10500.

The surface water quality is compared with CPCB water quality criteria mentioned in **Table 3.4** below:

Table 3.6, Water quality criteria as per Central Pollution Control Board

Designated-Best-	Class of	Criteria
Use	water	
Drinking Water Source	A	Total Coliforms Organism MPN/100ml shall be 50
without conventional		or less
treatment but after		pH between 6.5 and 8.5
disinfection		Dissolved Oxygen 6mg/l or more Biochemical
		Oxygen Demand 5 days 20°C 2mg/l or less
Outdoor bathing	В	Total Coliforms Organism MPN/100ml shall be 500
(Organized)		or less;
		pH between 6.5 and 8.5;
		Dissolved Oxygen 5mg/l or more Biochemical
		Oxygen Demand 5 days 20°C 3mg/l or less

Drinking water source	С	Total Coliforms Organism MPN/100ml shall be
after conventional		5000 or less;
treatment and		pH between 6 to 9;
disinfection		Dissolved Oxygen 4mg/l or more Biochemical
		Oxygen Demand 5 days 20°C 3mg/l or less
Propagation of Wild	D	pH between 6.5 to 8.5
life and Fisheries		Dissolved Oxygen 4mg/l or more Free Ammonia
		(as N) 1.2 mg/l or less
Irrigation, Industrial	Е	pH between 6.0 to 8.5
Cooling, Controlled		Electrical Conductivity at 25°C micro mhos/cm
Waste disposal		Max.2250
		Sodium absorption Ratio Max. 26
		Boron Max. 2mg/l
	Below-E	Not Meeting A, B, C, D & E Criteria

As per the standard practice, one sample from each station was taken in January. Sampling was done by standard sampling technique as per the Standard Methods. Necessary precautions were taken for preservation of samples.

3.2.2 Result & Conclusion:

Surface water Observation:

- The analysis results indicate that the pH ranges between 7.3 and 7.4.
- Dissolved Oxygen (DO) was observed in the range of 5.5 to 7.1 mg/l against the minimum requirement of 4 mg/l.
- BOD values were observed to be in the range of 7.6 to 12.1 mg/l.
- Total Coliform examination of surface water samples revealed the presence of total coliform in range of 4000 MPN/100 ml to 1500 MPN/100 ml.

Based on the results it is evident that most of the parameters of the samples comply with 'Category 'C' standards of CPCB (Table 3.5) are indicating their suitability for only Drinking water source after conventional treatment and disinfections.

3.3 Air Environment

Meteorology is the key to understand the air quality. The essential relationship between meteorology and atmospheric dispersion involves the wind in the broadest sense. Wind fluctuations over a very wide range of time, accomplish dispersion and strongly influence other processes associated with them.

A meteorological station was set up at the proposed mine premises. Meteorological data was generated during the Pre monsoon season and shown in **Table-3.5**

The following parameters were recorded at hourly intervals continuously during monitoring period, except rainfall which was recorded on daily basis.

- Wind speed
- Wind Direction
- Air Temperature

Table-3.7, Summarized project site meteorological data

	Temperatu	re °C	Wind Speed	(Km/Hr)
Month	Min	Max	Avarage	Max
MARCH 2023	21	38	9.8	21.8
APRIL 2023	26	44	12.8	25.4
MAY 2023	27	44	12.9	25.7

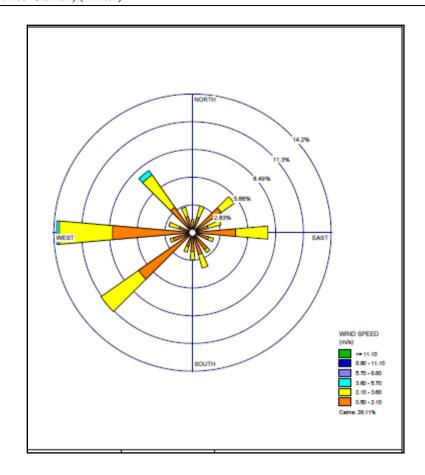


Figure 3.3: Wind Rose Diagram (at site)

3.3.1 Secondary Data Collected from IMD

Secondary data from IMD- Patna been collected for temperature, relative humidity, rainfall, wind speed and direction. The data at IMD is usually measured twice a day viz., at 0830 and 1730 hr.

The meteorological data is collected from the IMD- Patna is about 140 km from project site, which is the nearest operating IMD station to the project site. The data collected from IMD includes wind speed, wind direction, temperature, relative humidity and rainfall for the year 1981-2010. The monthly maximum, minimum and average values are collected for all the parameters except wind speed and direction. The collected data is tabulated in **Table-3.6**

When the data generated at project site is compared with the data recorded at IMD, it is observed that the data generated at the site is broadly in comparison with regional meteorology, except for minor variations as described above.

3.3.2 Comparison of primary and secondary data

The India Meteorological Department (IMD) records the data twice a day viz. 0830 hr and 1730 hr while the site-specific data has been recorded at an hourly interval. On comparison of site specific data generated for study period vis-à-vis the IMD data, slight variations were observed. The following observations are brought out:

When the data generated at project site is compared with the data recorded at IMD, it is observed that the data generated at the site is broadly in comparison with regional meteorology, except for minor variations as described above such as predominant wind direction is NW at IMD while at project site predominant wind direction is West.

3.3.3 Ambient Air Quality

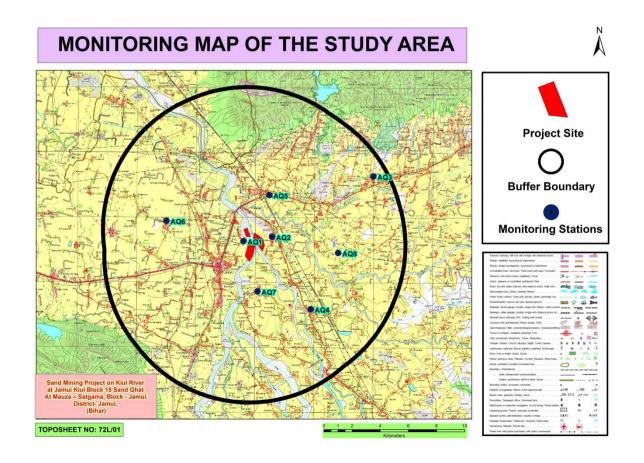
The ambient air quality was monitored in the impact area as per MoEF& CC guidelines. The study area represents entirely rural environment. The prime objective of the baseline air quality study was to assess the ambient air quality of the mining lease area.

3.3.4 Selection criteria for monitoring location

The baseline status of the ambient air quality has been assessed through a scientifically designed ambient air quality network. The design of monitoring network in the air quality surveillance programme has been based on the following consideration.

- Meteorological parameters including wind direction
- Topography of the study area
- Representative of regional background air quality for obtaining baseline status
- Representative of likely impact areas.

Ambient Air Quality Monitoring (AAQM) stations were set up at 08 locations with due consideration to the above mentioned points. AAQM locations were selected in downwind, upwind as well as crosswind direction of the proposed mining lease area covering core and buffer zones. The details of the monitoring stations are given in **Figure 3.4** and shown in **Table-3.7**


Ambient air quality monitoring was carried out twice a week with a frequency of 24 hours for three months during the study period. The common air pollutant namely Particulate Matter-10 (PM₁₀) & PM_{2.5}, Sulphur-dioxide (SO₂) and Oxides of Nitrogen (NO₂) has been measured through a planned field monitoring.

The baseline values of the air pollutants of concern are presented in Tables below statistical

parameters like minimum, maximum, average and 98th percentiles have been computed from the observed field data for all sampling stations and are given **Table-3.8**, **Table-3.9**, **Table-3.10& Table 3.11**. These are compared with the standards prescribed by Central PollutionControl Board (CPCB) for industrial, residential and rural zone.

Table 3.8: Ambient Air Quality Monitoring Stations

Air Monitoring Locations			
Location ID	Location name	Distance (Km) and Direction	
AAQ 1	Project Site(Near Village Jamui)	-	
AAQ 2	Katauna village	1.0 km E	
AAQ 3	Bahera village	9.30 Km NE	
AAQ 4	Ratanpur	6.87 Km SE	
AAQ 5	Mallehpur	3.10 Km N	
AAQ 6	Amrath	6.60 Km W	
AAQ 7	Sonpai	3.40 Km S	
AAQ 8	Darah	6.75Km E	

Figure 3.4 Ambient Air Quality Monitoring Stations

Table-3.9: Ambient Air Quality in the Study Area PM2.5

Location Code	PM2.5 (μg/m ³)				
	Name of the station	Min	Max	Average	98 th Percentile
AAQ1	Project Site(Near				
	Village Jamui)	45.25	55.46	51.84	55.46
AAQ2	Katauna village	32.15	46.28	39.72	45.76
AAQ3	Bahera village	41.26	52.16	45.26	52
AAQ4	Ratanpur	38.62	59.47	48.79	56.81
AAQ5	Mallehpur	38.35	54.62	47.71	54.28
AAQ6	Amrath	40.5	49.2	44.86	48.21
AAQ7	Sonpai	39.26	54.33	46.79	54.33
AAQ8	Darah	34	41.5	39.03	41.39

Table-3.10: Ambient Air Quality in the Study Area PM10

Location Code	$PM10 (\mu g/m^3)$					
	Name of the station	Min	Max	Average	98 th Percentile	
AAQ1	Project Site(Near Village Jamui)	70.46	80.96	76.13	80.77	
AAQ2	Katauna village	52.38	77.06	67.97	77.04	
AAQ3	Bahera village	61.38	78.34	73.93	78.32	
AAQ4	Ratanpur	62.98	89.48	77	88.96	
AAQ5	Mallehpur	65.52	89.81	77.44	89.75	
AAQ6	Amrath	62.3	76.5	70.53	74.97	
AAQ7	Sonpai	58.56	88.95	75.85	88.67	
AAQ8	Darah	69.4	78.9	76.14	78.89	

Table-3.11: Ambient Air Quality in the Study Area SO2

Location Code	SO2 (μg/m ³)					
	Name of the station	Min	Max	Average	98 th Percentile	
AAQ1	Project Site(Near	9.16	12.42	10.42	12.37	
	Village Jamui)	9.10	12.42	10.42	12.37	
AAQ2	Katauna village	12.84	18.19	15.83	18.17	
AAQ3	Bahera village	6.6	9.12	7.81	9.12	
AAQ4	Ratanpur	5.25	8.98	7.15	8.98	
AAQ5	Mallehpur	4.64	9.98	6.88	9.95	
AAQ6	Amrath	8.5	13.1	11.28	12.83	
AAQ7	Sonpai	5.28	8.95	7.06	8.95	
AAQ8	Darah	7.5	12.8	10.71	12.79	

Table-3.12: Ambient Air Quality in the Study Area NO2

Location Code	NO2 (μg/m ³)				
	Name of the station	Min	Max	Average	98 th Percentile
AAQ1	Project Site(Near Village Jamui)	14.85	18.37	16.15	18.36
AAQ2	Katauna village	18.01	22.08	19.16	20.82
AAQ3	Bahera village	10.78	14.67	13.3	14.58
AAQ4	Ratanpur	10.92	15.94	13.11	15.89
AAQ5	Mallehpur	9.28	16.71	13.17	16.66
AAQ6	Amrath	16.5	25.9	21.01	25.38
AAQ7	Sonpai	10.2	15.83	13.07	15.72
AAQ8	Darah	14	20.8	18.16	20.62

3.3.4.1 Baseline Scenario

Particulate Matter (PM2.5)

Fine particles include all types of combustion, including motor vehicles, power plants, Page | III 53

residential wood burning, forest fires, agricultural burning, and some industrial processes. In general some of the important sources of particulate matter are mines. The following sources of particulate matter in the study area are identified:

- Emission due to vehicular movement
- Dust generation from ground or other mining operations

PM2.5 recorded within the study area was in the range of 32.15 μ g/m³ to 59.47 μ g/m³. Table 3.3 were compared with the National Ambient Air Quality Standards (NAAQS) and found that all sampling stations recorded in the study area are within the applicable limits i.e., 60μ g/m³ for PM_{2.5} for industrial, residential, rural and other areas.

Suspended Particulate Matter (PM10)

Suspended particulate matter in general terms is the particulate matter in suspension in ambient air. It includes dust, smoke etc. In general some of the important sources of suspended particulate matter are mines. The following sources of suspended particulate matter in the study area are identified:

- Emission due to vehicular movement
- Dust generation from ground or other mining operations

The minimum and maximum level of PM10 recorded within the study area was in the range of $52.38~\mu g/m^3$ to $89.81~\mu g/m^3$. The 24 hourly average values of PM10 were compared with the National Ambient Air Quality Standards (NAAQS) and found that all sampling stations recorded in the study area are within the applicable limits i.e., $100~\mu g/m^3$ for PM10 in industrial, residential, rural and other areas.

Sulphur Dioxide (SO2)

Sulphur dioxide gas is an inorganic gaseous pollutant. Sulphur dioxide emissions are expected to be emitted wherever combustion of any fuel containing Sulphur takes place. The Sulphur in the fuel will combine with oxygen to form Sulphur dioxide. The following sources of Sulphur dioxide in the study area are identified:

• Emissions from domestic/consumption of fuel (coal, diesel, etc)

Sulphur dioxide in atmosphere is significant because of its toxicity; Sulphur dioxide is capable of causing illness and lung injury. Further it can combine with water in the air to form toxic acid aerosols that can corrode metal surfaces, fabrics and the leaves of plants. Sulphur dioxide is an irritant to the eyes and respiratory system. Excessive exposure to Sulphur dioxide causes breathing related diseases as it affects the lungs.

The minimum and maximum concentration of SO_2 recorded within the study area was 4.6 $\mu g/m^3$ to 18.19 $\mu g/m^3$.

The 24 hourly average values of SO_2 were compared with the National Ambient Air Quality Standards (NAAQS) and it was found that all sampling stations recorded values are below the applicable limits $80 \,\mu\text{g/m}^3$ for Residential, Rural and other areas.

Oxides of Nitrogen (NO2)

The important sources of oxides of Nitrogen are from utilities and auto exhaust due to vehicular movement in mine lease area. The following sources of oxides of nitrogen in the study area are identified.

• Emissions from vehicular movements in the study area.

Oxides of Nitrogen in the presence of sunlight will undergo reactions with a number of organic compounds to produce all the effects associated with photochemical smog. NO2 has inherent ability to produce deleterious effects by themselves like toxicity. It causes asphyxiation when its concentration is great enough to reduce the normal oxygen supply from the air. The minimum and maximum level of NO2 recorded within the study area was in the range of was $9.28 \, \mu g/m^3$ to $25.9 \, \mu g/m^3$.

The 24 hourly average values of NO_2 were compared with the National Ambient Air Quality Standards (NAAQS) and it was found that all sampling stations recorded values are below the applicable limits $80 \,\mu\text{g/m}^3$ for Residential, Rural and other areas.

Ambient Air Quality in the Study Area, Free Silica

Location Code	Free silica (μg/m³)			
	Name of the station	Min	Max	
AAQ1	Project Site(Near Village Jamui)	0.75	0.98	
AAQ2	Katauna village	0.63	0.95	
AAQ3	Bahera village	0.35	1.75	
AAQ4	Ratanpur	0.45	0.55	
AAQ5	Mallehpur	0.47	0.59	
AAQ6	Amrath	0.31	0.66	
AAQ7	Sonpai	0.45	0.83	
AAQ8	Darah	0.53	0.93	

3.4 SOIL ENVIRONMENT

Soil may be defined as a thin layer of earth's crust, a medium for the growth of plants. The soil characteristics include both physical and chemical properties. The soil survey and soil sample were carried out / collected to assess the soil characteristics of the study area. Soil samples were collected from 05 locations and analyzed as per CPCB norms. The soil sampling locations are marked in **Figure 3.5**and shown in **Table 3.12.** Thephysico-chemical characteristic of these soil samples is given in **Table 3.13.**

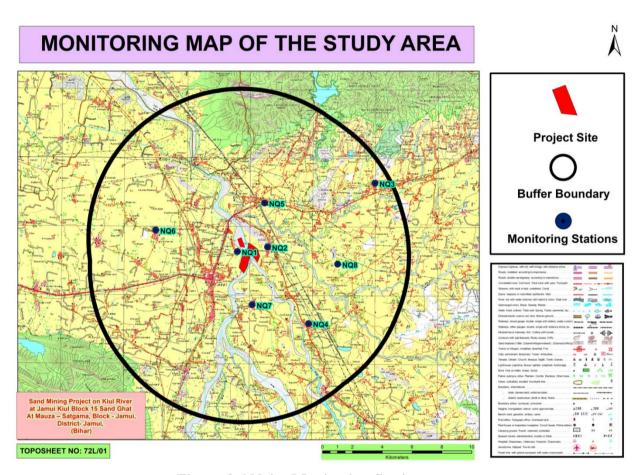
Table 3.13: Description of soil sampling locations

	Soil monitoring locations				
SQ 1	Project Site (Near Village Jamui)	-			
SQ 2	Katauna village	1.0 km E			
SQ 3	Bahera village	9.30 Km NE			
SQ 4	Ratanpur	6.87 Km SE			
SQ 5	Mallehpur	3.10 Km N			

MONITORING MAP OF THE STUDY AREA Project Site Buffer Boundary Monitoring Stations All Mazza Sand Mining Project on Kull River at James Liver and Mining Ri

Figure 3.5, Soil Sampling Locations

Table 3.14 (a): Physico-chemical properties of soil


S. N.	Parameter	Unit	S-1	S-2	S-3	S-4	S-5
1.	рН	-	7.51	7.36	7.72	8.04	7.85
2.	EC at 25o C	μS/cm	267	281	360	261	366
3	WHC	% by mass	16.6	17.2	22.9	34.6	26.9
4	Organic carbon	%	0.35	0.44	0.64	0.54	0.72
5	Porosity	%	49.1	47.9	46.0	48.3	48.7
6	Bulk Density	mg/kg	1.32	1.38	1.43	1.37	1.36
7	Particle size						
i).	Sand	% by mass	50.3	53.4	58.4	53.8	51.6
ii).	Clay	% by mass	19.6	19.5	23.6	27.4	19.1
iii).	Silt	% by mass	30.1	27.1	18.0	18.8	29.3
8.	Sodium (as Na)	mg/kg	231	259	182.5	278	260.1
9.	Potassium (as K)	kg/ha	81.7	74.8	164.6	291.7	216.8
10	Calcium (as Ca)	mg/kg	442.8	528.8	669.8	869.3	576.9
11.	Magnesium (as Mg)	mg/kg	235.9	284.6	339.7	477.1	299.7
12.	Phosphorus (as P)	mg/kg	19.3	18.4	23.9	19.3	11.8
13.	Nitrogen	mg/kg	146.8	159.2	186.4	171.2	176.8
14.	Zinc (as Zn)	mg/kg	4.4	4.6	3.7	5.2	2.9
15	Manganese	mg/kg	3.1	2.9	2.7	3.2	2.6
16	Copper (as Cu)	mg/kg	2.1	2.3	1.8	1.5	2.1
17	Iron	mg/kg	9.6	10.4	8.5	6.5	9.4
18	SAR	-	2.2	2.3	1.4	1.9	2.2
19	CEC	meq/100g	6.39	6.33	8.40	10.61	8.07

Observations:

Samples collected from identified locations indicate the soil is sandy type and the pH value ranging from 7.36 to 8.04, which shows that the soil is alkaline in nature. Potassium is found to be from 74.8 mg/kg to 291.7 mg/kg.

3.5 NOISE ENVIRONNENT

The noise levels within the study area were recorded using Sound Level Meter and noise monitoring results were compared with the Ambient Noise Quality Standard notified under Environment Protection Act, 1986. The levels recorded are as stated in **Table 3.15.** The noise level monitoring locations are marked in **Figure 3.6** and shown in **Table 3.14.**

Figure 3.6 Noise Monitoring Stations

Table 3.15: Noise Quality Monitoring Stations

	Noise Monitoring Locations				
NQ 1	Project Site (Near Village	-			
	Jamui)				
NQ 2	Katauna village	1.0 km E			
NQ 3	Bahera village	9.30 Km NE			
NQ 4	Ratanpur	6.87 Km SE			
NQ 5	Mallehpur	3.10 Km N			
NQ 6	Amrath	6.60 Km W			

Chapter-III	BASELINE DATA	DESCRIPTION
Chapter-111	DAGELINE DATA	DESCIMITION

NQ 7	Sonpai	3.40 Km S
NQ 8	Darah	6.75Km E

Table 3.16: Noise Monitoring Results

			Eq	uivalent No	ise Level, o	dB (A)	
S. No.	Locat	ions	C Guidel	t (as per PCB ines),Leq, B(A)	Observed value Leq,		
				NIGHT*	DAY*	NIGHT*	
1	Project Site (Near Village Jamui)	Industrial Zone	75	70	57.4	44.1	
2	Katauna village	Residential Zone	55	45	53.1	43.6	
3	Bahera village	Residential Zone	55	45	51.4	42.5	
4	Ratanpur	Silence zone	50	40	52.6	40.2	
5	Mallehpur	Residential Zone	55	45	50.5	42.4	
6	Amrath	Residential Zone	55	45	51.8	43.8	
7	Sonpai	Residential Zone	55	45	53.2	41.2	
8	Darah	Residential Zone	55	45	51.4	42.0	

Results

Noise monitoring reveals that the minimum & maximum noise levels at day time were recorded as 50.5dB(A) to 57.4 dB(A) respectively. The minimum & maximum noise levels at night time were found to be 40.2 dB (A) & 44.1 dB(A) respectively.

There are several sources in the 10 km radius of study area, which contributes to the local noise level of the area. On the commencement of the project, the sound from traffic activities

will add to the ambient noise level of the area. This will be kept under check by taking proper suggestive measures.

3.6 BIOLOGICAL ENVIRONMENT

3.6.1.1 Introduction

The ecological study reflects the potential of a regional ecosystem and its biological components. In India, the biological diversity of plants and animals varies from region to region on account of their diversity and density. Producers (plants), consumers (animals), and decomposers (microbes) govern the whole cycle of ecology. Plant and animals both are interdependent on each other.

The biological study is essential to understand the impact of any developmental project on the existing flora and fauna present in the study area. Hence, studies on various aspects of the ecosystem play an important role in identifying sensitive issues for undertaking appropriate action to mitigate the impact if required.

The Environment baseline data generation report in respect of flora-fauna has been prepared to assess the current ecology & biodiversity scenario of the area; and to carry out Environmental Management Plan based on the proposed project activities. The plan will identify and address the environmental and ecological conservation implications of the area. Conservation of biodiversity is essential for sustainable development.

The main objective of the ecological survey is aimed to find out the baseline status of flora and fauna (terrestrial and aquatic ecosystem) of the study area before the start of Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat.

3.6.2 Description of the study area

The Proposed Sand Mining Project is located on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

The proposed mining is a cluster of 03 mining lease area of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 over an combined area of 135.3 Ha is for river bed sand mining on Kiul River at Dist-Jamui, Bihar.

3.6.2.1 Description of Eco-sensitive zones in the Study Area (Wildlife Sanctuary/ National Parks/Animal or Elephant Corridors/ Protected Wetlands etc.)

There are no National parks, Biosphere Reserves, Wildlife corridors, Tiger/Elephant reserves (existing as well as proposed), within 5 km from the present project.

Also, areas protected under international conventions, national or local legislation for their ecological, landscape, cultural or other related value are doesn't exist in the core and buffer zone of the present project. On the other hand, the proposed alignment will cross over some riverine channel in the core zone. Adequate structure for cross drainage shall be constructed in order to maintain the natural hydrology and protection of all forms of biota found there in all the water bodies of the area. Apart from the above, the proposed project the area will promote tourism activities due to the existing Beraila Wildlife Sanctuaries (Bird Sanctuary).

3.6.3 Drainage /Water Bodies of the Study Area

Apart from these, some seasonal (monsoon-fed) riverine streams and Nallas are also present in the study area. Few ponds are also recorded nearby the different villages mainly used for fish farming, Cattle feeding, Irrigation purpose by the villagers, etc.

Scope and Objectives of the Study

The above study aims in identifying potential impacts on flora and fauna and to suggest relevant compensatory and mitigatorymeasures to protect/conserve biodiversity in the likely impacted area due to the project activity. Following points to be covered under the scope of work:

- > Survey of terrestrial & aquatic flora & fauna for core & buffer zone separately.
- ➤ Details of endemic species found in the study area and their IUCN status, Schedule status (as per WPA, 1972).
- ➤ Survey of the study area in terms of features like breeding &spawning grounds, habitats, flight paths, and the migratory path of the animals.
- > Survey of flora covering types e.g. agriculture crop, commercial crop, plantation, natural vegetation/forest type, grass land. The endangered & endemic species of flora & fauna beside any other flora, if present are also to be identified.
- > The survey has been covering total listing of the faunal population. The survey has also covered endangered, endemic, migratory & detail of aquatic fauna.
- ➤ The assessment of potential damage to terrestrial & aquatic flora and fauna. The impact should be categorized as primary & secondary, temporary and long term, unavoidable & risk transboundary impacts, possible irreversible change.

3.6.4 Methodology/ Data Collection

A primary field survey was carried out within a 10 km radius of the proposed project in pre monsoon period (March 2023 to May 2023). Both terrestrial and aquatic ecosystems have been studied to understand the biological environment. Secondary data were collected from authentic sources like the Forests Department, Fisheries Department, Agriculture Department of Jamui, and available published literature.

3.6.5 Flora (Aquatic and Terrestrial)

For the collection of data for aquatic flora, the methodology prescribed in the standard book of Adoni (1985), NEERI (1998), and APHA (2015) has been adopted. A total of 05 sampling sites were selected for the collection of samples to analyze the aquatic flora.

On the other hand, for the terrestrial data, community analysis was carried out during the summer season. For the collection of terrestrial data, a total of 05 sampling points were selected. At every sampling site, quadrates of 10m X 10m (100 sq.m.) size were randomly laid to study tree species. The circumference of all the adult individuals [£30 cm circumference at breast height (CBH)] was measured with Freeman's tape. The study of communities was carried out by using qualitative characteristics, and quantitative characteristics. Qualitative characteristic mainly involved presence/absence of the species, genera, and family. This showed the community structures, composition and other characteristic can be readily described by visual observation without actual measurements. The quantitative analysis involved the structure and composition of vegetation across vegetation types and compared in terms of frequency, density, abundance, and basal area of tree species.

3.6.6 Fauna (Aquatic and Terrestrial)

For the collection of data for aquatic fauna, the methodology prescribed in the standard book of Adoni (1985), NEERI (1998), and APHA (2015) has been adopted. A total of 05 sampling points were selected for the collection of samples to identify the aquatic fauna.

On the other hand, for the terrestrial data, the assessment of fauna was done by an extensive field survey in the area at 05 locations. During the survey, the Line Transect method was used for the study of mammals and Transact & Patch sampling were used for Amphibians, visual encountered methods was used for reptiles and butterflies. The presence of wildlife was also confirmed from the animal calls, footmarks, excreta, and from the local inhabitants depending on the animal sightings and the frequency of their visits in the project area which was later confirmed from the different government offices like the forest department or wildlife department, etc.

Observations of birds were made during a walk-through in the chosen transect for sighting birds. The number of birds observed in each sampling location was listed. Birds were noted and identified with the help of binocular and standard field identification guides.

3.6.7 Sampling Sites

A total of 05 sampling sites (TS-1 to TS-5) were selected for the terrestrial vegetation, avian fauna, and other terrestrial animals like reptiles, mammals, etc. For the collection of samples and data of aquatic flora and fauna, 05 separate sampling sites (AS-1 to AS-5) were also selected at different locations in the study area.

3.6.8Flora of the Study Area

The core zone of the proposed project area doesn't have any major natural forest land.

A major part of the core and buffer zone of the project is agricultural land having some major vegetation in the form of agro forestry. Vegetation patterns in villages and surrounding areas are slightly different from the rest of the areas in the Jamui district.

The common species grown near the villages are mostly edible, fruits bearing or useful plants. Purposely planted tree patches (mostly fruit-bearing) are available nearby several villages in the study area. The most dominant tree species in the study area are, *Ficus bengalensis* (Bargad) *Azadirachta indica* (Neem), *Aegle marmelos* (Bel), *Emblica officinalis* (Amla), *Syzygiumcumini* (Jamun), *Dalbergia sissoo* (Sisam), , *Musa paradisiacal* (Kela), *Cassia siamea* (Kasod/Siris), *Litchi chinensis* (Litchi), *Mangifera indica* (Aam) and in case of shrubs *Antigonum leptopus*, *Ricinus communis*, *Lantana camara*, *Jatropha gossipifolia* and *Cassia auriculata* etc. The most dominant species in the study area of both the district was *Mangifera indica* (Aam) and its different varieties.

3.6.9 Flora of Core zone

3.6.9.1 Terrestrial Flora of Core zone (Natural vegetation etc.).

There is no flora found in the core zone

3.6.9.2 Agricultural Crops/ Commercial Crops of the Core zone and Buffer Zone

Details of the agricultural vegetation and commercial crops were collected from the 05 selected sites of the core (Jamui district). These crops are similar to the crops of buffer zone also. So, the same information is applicable for the core and buffer zone.

Table 3.18: List of Crops seasonally planted by respective farmers in the Core and Buffer Zone

S.No.	Botanical Name	Local/Trade Name	Family Name
1	Zey mays	Makkha/Maize	
2	Triticum aestivum	Wheat	Poaceae
3	Oryza sativa	Paddy	
4	Cicer arietinum	Channa	Fabacea
5	Coriander sativum	Dhaniya	Apiaceae
6	Abelmoschus esculentus	Bhendi	Amaranthacea
7	Mamordica charanta	Karela	Cucurbiataceae
8	Capsicum annum	Mirchi	
9	Lycopersicon lycopersicum	Tomato	
10	Solanum melongena	Brinjal	Solanaceae
11	Capsicum annuum	Mirchi	
12	Solanum tuberosum	Potato	
13	Allium cepa	Onian	Amaryllidaceae
14	Cajanus cajan	Pigeon pea	Fabaceae
15	Carica papaya	Papaya	Caricaceae
16	Okra	Ladyfinger/ Bhindi	Malvaceae
17	Lagenaria siceraria	Bottle gourd/ Lauki	Cucurbitaceae
	Source: Present Survey Data Su	apported by District Agric	ulture Department, Jamui

3.6.9.3 Aquatic Flora of Core zone (Phytoplankton/ Macrophytes).

Aquatic floral details of the core zone were collected from 05 selected sites of the study area. Some sites were located buffer zone adjacent to the present alignment, however some were located in the core & buffer zone. Details of phytoplankton and macrophytic vegetation of the core and the buffer zone are given in tables 3.19, 3.20 & 3.21, and Figures 3.10 & 3.11.

Phytoplankton: Most of the phytoplankton species recorded from the core zone was similar to the buffer zone also. So, the same information is applicable for the core and buffer zone. Phytoplankton species were collected and identified from 05 selected sampling sites of the study area. Details of Phytoplankton species are given in table 3.19 and Figure 3.10.

Table 3.19: List of Phytoplankton species present in different water bodies in study area (Core and Buffer Zone).

	1									Schedu	<u> </u>
										le	
	Taxonomic Details	S-	Status	IUCN							
S.N.		1	2	3	4	5	6	7	8	in	Status
										WPA	
										(1972)	
	Chlorophyceae									NA	NA
1	Ankistrodesmus sp.			+	+	+	+			NA	NA
2	Ankistrodesmus falcatus		+	+			+	+	+	NA	NA
3	Arthrodesmus sp.	+		+	+		+		+	NA	NA
4	Chlorella sp.		+	+	+	+	+	+	+	NA	NA
5	Chlorella vulgaris	+		+	+	+			+	NA	NA
6	Chlorococcum sp.	+	+	+			+		+	NA	NA
7	Closteriopsis sp.	+	+		+	+		+		NA	NA
8	Closterium quadratulum						+	+	+	NA	NA
9	Coelastrum sp.	+	+	+	+		+		+	NA	NA
10	Cosmarium aequale			+	+		+	+		NA	NA
11	Cosmarium formii	+	+	+	+	+	+		+	NA	NA
12	Cosmarium margaritatum	+		+	+		+	+		NA	NA
13	Crucigenia sp.	+	+	+	+		+			NA	NA
14	Gonium sp.	+		+		+	+		+	NA	NA
15	Oocystis crassa	+	+			+	+	+	+	NA	NA
16	Pediastrum duplex	+	+	+	+		+		+	NA	NA
17	Treubaria triappendiculata			+		+	+	+	+	NA	NA
18	Ulothrix sp.	+	+	+	+	+	+	+		NA	NA
19	Ulothrix zonata	+		+		+	+		+	NA	NA
20	Volvox sp.	+	+	+		+	+			NA	NA
21	Zygnema sp.	+	+	+	+	+	+	+		NA	NA
	Total	19	15	23	16	17	24	12	17		
	Cyanophyceae									NA	NA
1	Anabaena sp.		+	+	+	+	+		+	NA	NA

2	Anabaena circinalis	+	+	+	+	+	+	+		NA	NA
3	Anabaena flosaque	+	+		+	+	+	+	+	NA	NA
4	Anacystis sp.	+		+		+	+		+	NA	NA
5	Aphanocapsa sp.	+		+	+	+	+	+	+	NA	NA
6	Aphanothece sp.	+	+		+	+			+	NA	NA
7	Chroococcus sp.	+		+	+	+	+	+		NA	NA
8	Gloeocapsa sp.	+	+	+			+		+	NA	NA
9	Lyngbya sp.	+	+		+	+	+	+	+	NA	NA
10	Merismopedia sp.	+	+	+		+	+	+	+	NA	NA
11	Merismopedia tenuissima	+		+	+	+	+			NA	NA
12	Microcystis sp.		+		+			+	+	NA	NA
13	Microcystis aeruginosa	+		+			+			NA	NA
14	Nostoc sp.		+		+	+	+	+	+	NA	NA
15	Oscillatoria subbrevis	+			+		+		+	NA	NA
16	Spirulina sp.		+	+	+	+	+	+		NA	NA
17	Spirulina laxissima		+	+		+	+		+	NA	NA
	Total	12	11	11	12	13	15	9	12		
	Bacillariophyceae									NA	NA
1	Achnanthes sp.	+	+	+	+		+	+	+	NA	NA
2	Amphora ovalis	+				+	+		+	NA	NA
3	Amphora sp.	+	+	+	+	+		+		NA	NA
4	Cocooneis sp.	+	+		+		+	+	+	NA	NA
5	Cyclotella sp.			+		+	+	+	+	NA	NA
6	Cymbella affinis	+		+	+		+		+	NA	NA
7	Melosira granulata	+				+	+	+		NA	NA
8	Navicula similis	+	+	+	+		+	+	+	NA	NA
9	Navicula subrhyncocephala	+	+		+		+		+	NA	NA
10	Nitzschia palea	+	+		+	+	+			NA	NA
11	Pinnularia sp.	+	+	+				+	+	NA	NA
12	Synedra acus	+				+	+		+	NA	NA
13	Synedra ulna		+		+	+	+	+	+	NA	NA
	Tabellaria sp.	+			+		+			NA	NA
14	Tabellaria sp.	'									

	Euglenophyceae									NA	NA
1	Euglena acus	+	+	+	+	+	+	+	+	NA	NA
2	Euglena sp.	+			+	+	+		+	NA	NA
3	Euglepha sp.	+	+	+	+	+	+	+	+	NA	NA
4	Phacus sp.		+				+			NA	NA
5	Phacus caudatus	+			+	+	+	+	+	NA	NA
6	Trachelomonas sp.	+	+	+	+	+	+	+		NA	NA
	Total	5	4	3	5	5	6	4	4		
	Source: Primary Survey Data of P&M Solution Pvt. Ltd., Noida										

Table 3.20: Site wise Qualitative list of Phytoplankton species recorded from the Core and Buffer Zone

Class	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8
Chlorophyceae	19	15	23	16	17	24	12	17
Cyanophyceae	12	11	11	12	13	15	9	12
Bacillariophyceae	16	12	9	13	11	15	10	13
Euglenophyceae	5	4	3	5	5	6	4	4
Total No. of Species	52	42	46	46	46	60	35	46

Macrophytes: The aquatic vegetation recorded from the core zone was similar to the aquatic vegetation of the buffer zone also. So, the same information is applicable for the core and buffer zone. The maximum number of aquatic vegetation was recorded at sites 06 and 08 due to the perennial nature of the water bodies. On the other hand, other water bodies support less vegetation due to a lack of water (monsoon-fed streams), and moisture. The details of Macrophytes species are given in table 3.21 and Figure 3.11.

Table 3.21: List of Aquatic Macrophytic vegetation of Core and Buffer Zone

S.No.	Name of the Taxa	Family Name	IUCN	S-1	S-	S-	S-	S-	S-	S-7	S-
5.110.	Name of the Taxa	ranny ivanie	Status		2	3	4	5	6	5-7	8
1	Azolla pinnata	Salviniaceae	LC	+	+	+	+	+	+	+	+
2	Cyperus alopecuroides	Cyperaceae	LC	+	+			+	+	+	+
3	Cyperus difformis	Cyperaceae	LC	+		+	+		+	+	+

4	Eichhornia crassipes	Pontederiaceae	LC	+	+	+		+	+		+
5	Hydrilla verticillata	Hydrocharitaceae	LC				+			+	+
6	Ipomea aquatica	Convolvulaceae	LC		+	+	+	+	+		+
7	Ipomea carnea	Convolvulaceae	LC	+	+	+	+		+	+	+
8	Lemna minor	Araceae	LC	+	+			+	+	+	+
9	Ludwigia parviflora	Onagraceae	LC	+	+	+	+		+	+	+
10	Nelumbo sp.	Nelumbonaceae	LC		+			+			
11	Nymphoides aquatica	Menyanthaceae	LC	+		+		+	+	+	+
12	Phragmites karka	Poaceae	LC						+		
13	Pistia stratiotes	Araceae	LC		+		+			+	+
14	Polygonum glabrum	Polygonaceae	LC	+	+	+		+	+	+	+
15	Typha latifolia	Typhaceae	LC						+		+
16	Typha orientalis	Typhaceae	LC		+		+	+	+	+	
	1	Species	9	8	8	8	9	13	11	13	

3.6.10 Flora of Buffer zone

3.6.10.1 Terrestrial Flora of Buffer zone (Natural vegetation/Commercial vegetation).

During the present survey Tree herbs and shrubs species were recorded from the buffer zone of the present study area. The below-mentioned vegetation details have been collected from the Core as well as Buffer zone of the present study area. All the details have been furnished based on the field survey at 09 different locations and data supported by the Department of Forest, Jamui district of Bihar. The details of vegetation of the buffer zone is given in Table 3.22.

Table 3.22: List of Trees, Shrubs, Herbs and Grasses observed in Buffer Zone

S.No.	Botanical Name	Common/ Hindi Name	Name of family
	Trees		
1	Acacia nilotica	Babool	Mimosaceae
2	Acacia nilotica	Desi babool	Fabaceae
3	Aegle marmelos	Bel	Rutaceae
4	Ailanthus excels	Adusa	Simaroubaceae

5	Albizzia amara	Siris	Mimosoideae
6	Albizzia lebbeck	Sirish	Mimosaceae
7	Alstonia scholaris	Saptaparni	Apocynaceae
8	Anthocephalus cadamba	Kadamb	Rubiaceae
9	Artocorpus heterophyllus	Jack fruit	Moraceae
10	Azadirachta indica	Neem	Meliaceae
11	Bauhinia variegata L.	Kachnar	Leguminosae
12	Bombax ceiba	Semal	Malvaceae
13	Bombax malabaricum	Semal tree	Malvaceae
14	Butea monosperma	Palas	Leguminosae
15	Cassia fistula	Bahawa	Caesalpinaceae
16	Cassia siamea	Chirkundi	Mimosaceae
17	Dalbergia latifolia	Shisam	Leguminosae
18	Dalbergia sissoo	Shisam	Leguminosae
19	Delonix regia	Gulmohar	Fabaceae
20	Dendrocalamus strictus	Bamboo	Poaceae
21	Eucalyptus globules	Nilgiri	Myrtaceae
22	Ficus benghalensis	Bargad	Moraceae
23	Ficus religiosa	Pipal	Moraceae
24	Madhuca longifolia	Mohua tree	Sapotaceae
25	Magnifera indica	Aam	Anacardiaceae
26	Melia azedarach	Bukkam Neem	Meliaceae
27	Moringa olerifera	Munga	Moringanaceae
28	Musa paradisiacal	Banana	Musaceae
29	Nerium oleamder	Kaner	Apocynaceae
30	Phyllanthus emblica	Awla	Euphorbiaceae
31	Pisidium guava	Guava	Myrtaceae
32	Pongamia pinnata	Karanj	Leguminosae
33	Prosopis juliflora	Vilayati babool	Fabaceae
34	Punica malus	Anar	Lythraceae
35	Shorea robusta	Sal	Depterocarpaceae
36	Syzygium cumini	Jamun	Myrtaceae
37	Tectona grandis	Sagwan	Verbenaceae

38	Terminalia arjuna	Arjun	Combretaceae
39	Zizyphus jujube	Ber	Rhamnaceae
40	Zyziphus mauritiana	Ber	Rhamnaceae
Shrub	& Herbs		
41	Acanthospermum hispidum	Kanti	Asteraceae
42	Acheranthus aspera	Aghada	Amaranthaceae
43	Antigonum leptopus	coral vine	eaecanogyloP
44	Argemone mexicana	Pila dhtura	Papaveraceae
45	Chenopodium album	manure weed	Amaranthaceae
46	cleome viscosa	Pivali tilval	Cleomaceae
47	Dalura metel	Dhotra	Solanaceae
48	Echinops echinatus	Unthkantali	Asteraceae
49	Ervatamia divaricata	Chandani	Apocynaceae
50	Euphorbia hirta	Mothi dudhi	Evphorbiaceae
51	Ipomoea carnea	Besharam	Convolvulaceae
52	Jatropha gossipifolia	cotton-leaf	Euphorbiaceae
53	Lantana camara	Ghaneri	Verbenaceae
54	Mimosa pudica	Chui Mui	Mimosaceae
55	Ocimum sanctum	Tulsi	Labiatae
56	Parthenium hysterophorus	Gajar grass	Asteraceae
57	Ricinus communis	Arand	Euphorbiaceae
58	Tridax procumbens	Kambarmodi	Asteraceae
59	Xanthium strumarium	Chota Dhatura	Asteraceae
Grasse	es		1
60	Apluda mutica	Mauntian grass	Poaceae
61	Apluda mutica	Banjura grass	Poaceae
62	Commelina benghalensis	Bokna	Commelinaceae
63	Cynodon dactylon	Doob	Poaceae
64	DactylSeptemberenum aegyptium	Crow foot grass	Poaceae
65	Pennisetum purpureum	Elephant grass	Poaceae
66	Saccharum spontaneum	kans	Poaceae
Climb	ers	•	•
67	Abrus precatorius	Gunja	Fabaceae

68	Antigonon leptopus	Anantalata	Polygonaceae
69	Bougainvillea glabra	Booganbel	Nyctaginaceae
70	Celastrus paniculata	Kujari	Celastraceae
71	Cissampelos pareira	Khariya lata	Menispermaceae
72	Clitoria ternatea	Blue pea	Fabaceae
73	Cuscuta reflexa	Amarbel	Convolvulaceae
74	Cuscuta reflexa	Amar bel	Convolvulaceae
75	Hemidesmus indicus	Anantamul	Apocynaceae
76	Ipomoea cairica	Neeli Bel	Convolvulaceae
77	Tilospora cordifolia	Giloy	Menispermaceae

Source: Primary data of P&M Solution, Noida and data supported by the Department of Forest, Jamui district of Bihar.

3.6.10.2 Agricultural vegetation/ Commercial vegetation of the Buffer zone.

The variety of Crops and cropping patterns in the core and the buffer zone was the same in the study area. Vegetation details of the buffer zone were collected from 05 selected sites (TS-1 to TS-05)

3.6.10.3 Aquatic Flora of Buffer zone (Phytoplankton/ Macrophytes/ Aquatic Weeds)

Phytoplankton: The diversity of Phytoplankton species was similar in the core and buffer zone. The details of macrophytic vegetation of the buffer zone are given in Table 3.19 & 3.20 and Figure 3.10.

Macrophytes: The diversity of aquatic macrophytes was similar in both core and buffer zone. The details of macrophytic vegetation of the buffer zone are given in Table 3.21 and Figure 3.11.

3.6.11 Fauna of the Study Area

Proposed alignment passing through the rural and purely in the agricultural field. At some places, it will cross from adjacent to some villages in the study area. The study area is devoid of any natural forest, so, major wildlife animals are rarely found in the area. Only some moving animals were observed. Domesticated animals mainly constitute the faunal population within the project area.

The assessment of fauna was done on the bases of secondary data collected from different government offices like the forest department, wildlife department, etc. The presence of Page | III 71

wildlife was also confirmed by the local inhabitants depending on the animal sightings and the frequency of their visits in the project area.

During the present study period, a large number of local birds are noticed in the buffer zone of the study area. But, there are no bird habitats like nesting, breeding, and foraging patterns are noticed in the core zone.

3.6.12 Fauna of the Core Zone

3.6.12.1 Terrestrial fauna of core zone (Mammals/Reptiles/amphibians/birds/insects etc.).

The domesticated animals like Goat (*Capra aegagrus*); Buffalo (*Bubalus bubalis*); Cow (*Bos primigenius*); Horse (*Equus caballus*); Ass (*Equus hemionus*) and Dog (*Canis lupus familaris*) were observed moving in different parts of the study area (including core and buffer zone), especially nearby town and villages. Other mammals and reptiles found in the study area are listed in Table 3.23.

Table 3.23: List of Mammals/Reptiles/Amphibians/Birds recorded from the Core Zone

S. No.	Common Name	Scientific Name	Family	Schedule status (as per WPA- 1972)	IUCN status
Mamn	nals	-1			
1	Five striped palm squirrel	Funambulus pennanti	Sciuridae	IV	LC
2	Indian Field Mouse	Mus booduga	Muridae	V	LC
3	Common House Rat	Rattus rattus	Muridae	V	LC
4	Bandicoot Rat	Bandicotabengalensis	Muridae	V	LC
Reptile	es & Amphibians		l	l	
5	Garden lizard	Calotes versicolor	Agamidae	IV	NE
6	Common skink	Eutropis carinata	Scincidae	IV	LC
7	King cobra	Ophiophagus hannah	Elapidae	II	LC
8	Cobra	Naja naja	Elapidae	II	LC
9	Garden lizard	Calotes versicolor	Agamidae	IV	NE
Bird S	pecies		I	I	
1	Acridotheres tristis	Myna	Sturnidae	IV	LC
2	Acridotheres tristis	Common myna	Sturnidae	IV	LC

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

3	Ardeola grayii	Indian pond heron	Ardeidae	IV	LC
4	Bubulcus ibis	Cattle egret	Ardeidae	IV	LC
5	Columba livia	Pigeon	Columbidae	IV	LC
6	Corvus splendens	Crow	Corvidae	V	LC
7	Milvus migrans	Black Kite	Accipitridae	IV	LC
8	Passer domesticus	House sparrow	Passeridae	IV	LC
9	Phalacrocorax niger	Little cormorant	Phalacrocoracidae	IV	LC
10	Pycnonotus cafer	Red-vented bulbul	Pycnonotidae	IV	LC
11	Saxicoloides fulicatus	Indian robin	Psittaculidae	IV	LC
12	Turdoides caudate	Common babbler	Leiothrichidae	IV	LC
13	Upupa epops	Common hoopoe	Upupidae	IV	LC
14	Vanellus indicus	Red-wattled lapwing	Charadriidae	IV	LC

IUCN Status = LC: Least Concern, **NE:** Not Evaluated.

Source: Primary Survey data of P&M Solution, Noida and the data supported by Department of Forest, Jamui district of Bihar

Table 3.24: Butterflies observed in the Core zone

S. No.	Common Name	Scientific Name	Family	IUCN Status
1.	Plain Tiger	Danaus chrysippus	Nymphalidae	LC
2.	Common emigrant	Catopsilia pomona	Pieridae	LC
3.	Common crow	Euploea core	Nymphalidae	LC
4.	Small grass yellow	Eurema brigitta	Pieridae	LC

Source: Primary Survey data of P&M Solution, Noida and the data supported by Department of Forest, Jamui district of Bihar

3.6.12.3 Aquatic Fauna of Core zone (Zooplankton/ Macro-invertebrates/ Fishes/ Amphibians/ Turtles etc.)

All the aquatic fauna recorded from the core zone were also recorded from the buffer zone and most of the sampling sites are the same for the core and buffer zone as given in table 3.17. So, the list of aquatic fauna of the core zone is merged with the details of the buffer zone and is given in Table 3.25 to 3.27.

3.6.12.4 Fauna of Buffer zone

To prepare a detailed report on the status of faunal biodiversity of the present study area (1 km buffer) of Jamui district of Bihar and to assess the impacts due to digging/ leveling of alignment route/ construction of bridge/ operational activity which evolves suitable mitigation measures to protect & conserve biodiversity following components were studied: terrestrial biodiversity, wildlife survey (diversity), habitat study (feeding, breeding, roosting areas), distribution of birds, rare & endangered species of the study area.

The fauna of the study area (Core and Buffer zone) vary upon the local topography and different types of habitats. The fauna of the study area has been categorized into two categories based on their habitat, i.e.

- (i) Aquatic fauna and
- (ii) Terrestrial fauna.

During the present survey, there are some seasonal, perennial and private water body was observed along with the proposed alignment, which will be affected due to the present project activities. The alignment of the project will cross a few seasonal and perennial streams.

3.6.12.6 Terrestrial Fauna of Buffer zone (Mammals/Reptiles/Amphibians/Birds/ Insects etc.)

The major part of the study area lies under agricultural fields and barren land which restricts the wildlife habitat significantly. There is neither any wildlife sensitive area nor any corridor for the movement of wildlife in the study area. A list of the animals of the study area has been prepared on the basis of the survey and also inquire from the local people. The animals, thus recorded were cross-checked with Wildlife (Protection) Act, 1972 for their schedule status. Faunal details of the study area are given in Tables 3.25 to 3.27.

i. Mammals and Reptiles/ Amphibians

The domesticated animals like Goat (*Capra aegagrus*); Buffalo (*Bubalus bubalis*); Cow (*Bos primigenius*); Horse (*Equus caballus*); Ass (*Equus hemionus*) and Dog (*Canis lupus familaris*) were observed moving in different parts of the study area, especially nearby town and villages. Other mammals and reptiles found in the study area are listed in Table 3.25.

Table 3.25: List Mammals, Reptiles and Amphibians recorded from the Buffer Zone

S. No.	Common Name	Scientific Name	Family	Status as per WPA- 1972	IUCN status
				1972	

Mam	mals				
1	Bandicota bengalensis	Bandicoot Rat	Sciuridae	IV	LC
2	Canis aurius	Jackal	Pteropodidae	V	LC
3	Fellis chaus	Jungle cat	Soricidae	IV	LC
4	Funambulus palmarum	Three-striped Squirrel	Suidae	III	LC
5	Funambulus pennanti	Five striped palm squirrel	Hyaenidae	III	LC
6	Herpestes edwardsi	Indian Grey Mongoose	Canidae	II	LC
7	Hyaena hyaena	Stripped hyena	Leporidae	V	LC
8	Lepus nigricollis	Indian Hare	Canidae	II	LC
9	Mus booduga	Indian Field Mouse	Sciuridae	IV	LC
10	Presbytis entellus	Common langur	Cercopithecid II		LC
11	Pteropus giganteus	Indian Flying Fox	Pteropodidae	V	LC
12	Suncus murinus	Grey musk Shrew	Muridae	V	LC
13	Sus scrofa	Wild Boar	Canidae	III	LC
14	Vulpes bengalensis	Indian fox	Felidae	II	LC
Repti	les and Amphibians				
1	Bufo melanostictus	Common toad	Bufonidae	IV	LC
2	Bungarus caeruelus	Krait	Elapidae	IV	NE
3	Calotes versicolor	Garden lizard	Agamidae	IV	NE
4	Crotolus sp.	Pit viper	Viperadae	II	LC
5	Euphlyctis hexadactyla	Common frog	Dicroglossida e	IV	LC
6	Eutropis carinata	Common skink	Scincidae	IV	LC
7	Naja naja	Cobra	Elapidae	II	LC
8	Ophiophagus hannah	King cobra	Elapidae	II	LC
9	Ptyas mucosa	Rat Snake	Colubridae	II	NE
10	Rana temporaria	Common frog	Ranidae	IV	LC
11	Testudo graeca	Common Tortoise	Testudinidae	IV	VU
12	Varanus sp.	Monitor lizzard	Varanidae	II	LC

IUCN Status = LC: Least Concern, **VU:** Vulnerable. **NT:** Near Threatened, **NE:** Not Evaluated, **Source:**Primary Survey data of P&M solution, Noida and the data supported by Department of Forest, Jamui District.

ii. Avian Fauna

Table 3.26: Avian Fauna observed from the study area (01 KM Buffer area)

S.No	Scientific Name	Common Name	Family	Schedule Status (WPA- 1972	IUCN Status
1	Acridotheres tristis	Myna	Sturnidae	IV	LC
2	Acridotheres tristis	Common myna	Sturnidae	IV	LC
3	Alcedo atthis	Small blue kingfisher	Alcedinidae	IV	LC
4	Amandava amandava	Red munia	Estrildidae	IV	LC
5	Amaurornis phoenicurus	White-breasted waterhen	Rallidae	IV	LC
6	Ardea cinerea	Grey heron	Ardeidae	IV	LC
7	Ardea purpurea	Purple heron	Ardeidae	IV	LC
8	Ardeola grayii	Indian pond heron	Ardeidae	IV	LC
9	Athene brama	Spotted Owlet	Strigidae	IV	LC
10	Bubulcus ibis	Cattle egret	Ardeidae	IV	LC
11	Butorides striatus	Striated heron	Ardeidae	IV	LC
12	Casmerodius albus	Great egret	Ardeidae	IV	LC
13	Centropus sinensis	Crow pheasant	Cuculidae	IV	LC
14	Ceryle rudis	Pied kingfisher	Alcedinidae	IV	LC
15	Cinnyris asiaticus	Purple Sunbird	Psittaculidae	IV	LC
16	Columba livia	Pigeon	Columbidae	IV	LC
17	Corvus macrorhynchos	Jungle crow	Corvidae IV		LC
18	Corvus splendens	Crow	Corvidae	V	LC
19	Dicrurus adsimilis	Black drango	Dicruridae	IV	LC
20	Egretta garzetta	Little egret	Ardeidae	IV	LC

21	Francolinus pondicerianus	Titar	Phasianidae	IV	LC
22	Gallinule chloropus	Common moorhen	Rallidae	IV	LC
23	Gallus gallus	Jungle hen	Phasianidae	IV	LC
24	Passer domesticus	House sparrow	Passeridae	IV	LC
25	Pluvialis fulva	Pacific golden plover	Charadriidae	IV	LC
26	Pseudibis papillosa	Red-naped ibis	Threskiornithidae	IV	LC
27	Psittacula krameri	Rose ringed Parakeet	Psittacidae	IV	LC
28	Pycnonotus cafer	Red-vented bulbul Pycnonotidae		IV	LC
29	Sarkidiornis melanotos	Knob-billed duck	Anatidae	IV	LC
30	Saxicoloides fulicatus	Indian robin	Psittaculidae	IV	LC
31	Spilopelia senegalensis	Little brown dove			LC
32	Sturnia pagodarum	Brahminy Starling	Sturnidae	IV	LC
33	Tringa tetanus	Common redshank	Charadriidae	IV	LC
34	Turdoides caudate	Common babbler	Leiothrichidae	IV	LC
35	Upupa epops	Common hoopoe	Upupidae	IV	LC

IUCN Status =LC: Least Concern, VU: Vulnerable.

Source: Primary Survey data of P&M Solution and the data supported by Department of Forest, Jamui, Bihar.

iii. Butter Flies

Table 3.27: Butterflies observed from the Buffer zone of the study area

S.No.	Scientific Name	Common Name	Family	IUCN Status
1	Catopsilia pomona	Common emigrant	Pieridae	LC
2	Chlosyne lacinia	Sunflower/Bordered Patch	Nymphalidae	LC
3	Crocothemis erythraea	Scarlet dragonfly	Libellulidae	LC
4	Danaus chrysippus	Plain Tiger	Nymphalidae	LC
5	Danaus genutia	Stripped Tiger	Nymphalidae	LC
6	Euploea core	Common crow	Nymphalidae	LC
7	Eurema brigitta	Small grass yellow	Pieridae	LC

Source:Primary Survey data of P&M Solution and the data supported by Department of Forest, Jamui, Bihar.

3.6.12.7 Aquatic Fauna of Buffer zone (Zooplankton/Macro-invertebrates/Fishes/Amphibians /Turtles etc.)

Aquatic fauna is referred to as any form of an animal that has adapted to living in the aquatic environments such as rivers, lakes, ponds, dams, streams, etc.). River and its adjoining streams are formed the drainage in the study area. Few other seasonal water bodies like village ponds, streams, and nallas are also present in the study area. In general, faunal account of any water bodies can be divided into following categories, *i.e.*, (i) zooplankton, (ii) Macro-invertebrates/Insects/Benthos (iii) Fishes (iv) Amphibians/Reptiles/ etc. Details of Zooplankton; Macro-invertebrates/insects/benthos; Amphibians/Reptiles and Fishes recorded from the different water bodies of the study area (Jamui District) are given in Tables 3.28 to 3.31.

i. Zooplankton

Zooplankton is commonly found in all types of aquatic habitats. These are recognized as secondary producers and considered as one of the best tools for the environmental monitoring program. During the present study period, a total of 60 zooplankton species was recorded and identified comprising of class Protozoa, Rotifera, Cladocera, Copepoda, and Ostracoda. The details of the zooplankton diversity of different habitats are given in Table 3.28 and Fig 3.12.

Table 3.28: Zooplankton species found in the different water bodies situated in the buffer zone

S.No.	Name of the Taxa	S- 1	S- 2	S- 3	S- 4	S- 5	S- 6	S- 7	S- 8	Schedule Status in WPA (1972)	IUCN Status
	Protozoa										
1	Arcella sp.	+	+	+		+	+		+	NA	NA
2	Arcella discoides	+	+	+	+	+	+	+	+	NA	NA
3	Arcella vulgaris	+	+	+	+	+	+	+	+	NA	NA
4	Centropyxis sp.	+	+	+	+	+	+	+		NA	NA
5	Centropyxis ecornis		+			+	+		+	NA	NA

6	Difflugia cuminata	+	+		+	+	+		+	NA	NA
7	Euglypha sp.	+		+	+	+	+	+	+	NA	NA
8	Metopus sp.		+	+	+		+			NA	NA
	Total	8	9	8	7	8	9	5	8		
	Rotifera		1	l	1		l		l		
1	Anuraeopsissp.	+		+	+	+	+	+	+	NA	NA
2	Anuraeopsis fissa				+	+	+	+	+	NA	NA
3	Asplanchna sp.	+	+	+		+	+	+	+	NA	NA
4	Asplanchna brightwelli		+		+	+	+	+	+	NA	NA
5	Brachionus sp.	+		+	+	+	+	+		NA	NA
6	Brachionus angularis		+						+	NA	NA
7	Brachionus calyciflorus	+	+	+	+		+	+	+	NA	NA
8	Brachionus quadridentata		+	+	+		+	+		NA	NA
9	Brachionus falcatus	+			+	+	+	+		NA	NA
10	Brachionus forficula	+		+		+	+		+	NA	NA
11	Cephlodella gibba	+	+		+	+	+	+		NA	NA
12	Filinia sp.	+					+	+	+	NA	NA
13	Filinia longiseta		+	+		+		+	+	NA	NA
14	Keratella sp.	+		+		+			+	NA	NA
15	Keratella Cochlearis	+	+	+	+	+	+	+	+	NA	NA
16	Keratella Tropica	+	+		+		+	+		NA	NA
17	Lecane sp.				+		+	+	+	NA	NA
18	Lecane luna	+		+		+	+		+	NA	NA
19	Monostyla quadridentatus		+	+						NA	NA
20	Mytilina sp.	+			+	+	+	+	+	NA	NA
21	Polyarthra vulgaris	+		+		+			+	NA	NA
22	Testudinella patina		+		+		+	+		NA	NA
23	Trichocerca sp.	+		+		+	+		+	NA	NA
	Total	15	11	13	13	15	18	16	16		
	Cladocera		1	1	1	1	1	1	1	<u> </u>	1
1	Alona sp.	+	+	+	+	+	+	+	+	NA	NA
2	Alona intermediate		+		+		+	+		NA	NA
3	Bosmina sp.	+		+	+	+	+	+	+	NA	NA

	e: Primary Survey data of P&			_			_	,	7		
4	Stenocypris malcolmsoni Total	+ 4	3	4	+ 4	+ 3	+ 4	3	4	NA	NA
3	Stenocypris sp.	+	+	+	+	+	+	+	+	NA NA	NA NA
2	Cypris sp.	+	+	+	+		+	+	+	NA	NA
1	Cyprinotus sp.	+		+	+	+	+	+	+	NA	NA
	Ostracoda		1	ı	1	ı		ı	1		
	Total	10	10	8	9	7	11	7	9		
11	Thermocyclops crassus	+	+	+	+	+	+	+	+	NA	NA
10	Thermocyclops sp.	+	+	+	+	+	+	+	+	NA	NA
9	Paradiaptomus sp.	+		+	+		+		+	NA	NA
8	Nitzii amphibia	+	+	+	+	+	+	+		NA	NA
7	Neodiaptomus sp.		+		+		+		+	NA	NA
6	Nauplius larvae	+	+	+	+	+	+	+	+	NA	NA
5	Mesocyclops sp.	+	+		+		+	+	+	NA	NA
4	Heleodiaptomus viduus	+	+			+	+			NA	NA
3	Eucyclops sp.	+	+	+			+	+	+	NA	NA
2	Diaptomus sp.	+	+	+	+	+	+		+	NA	NA
1	Cyclops sp.	+	+	+	+	+	+	+	+	NA	NA
	Copepoda										
	Total	9	7	8	7	6	11	8	7		
12	Simocephalus sp.	+	+	+		+			+	NA	NA
11	Moina daphnia	+			+		+	+	+	NA	NA
10	Leydgia sp.	'	+	+		+	+	'	+	NA	NA
9	Diaphnosoma excisum	+	+	+	'	'	+	+	'	NA	NA
8	Daphnia pulex	+ +			+	+	+	+	+	NA NA	NA NA
7	Chydorus sphaericus Daphnia sp.	+	+	+	+ +		+ +	+		NA NA	NA NA
5	Charles and a spin serious	<u> </u>	+	+	<u>.</u>	+	+		+	NA NA	NA NA
4	Bosmina longirostris	+		+		_	+	+		NA	NA

ii. Macro-invertebrates (Insects/Benthos)

Page |

Macro-invertebrates are commonly found in all types of aquatic habitats such as streams, rivers, wetlands, lakes, and ponds. The term macro-invertebrate is used for those animals that have no backbone and can be seen with the naked eye. These animals generally include insects, crustaceans, mollusks, and annelids. They are significant within the food chain as larger animals such as fish and birds rely on them as a food source. None of the macro-invertebrate species have been observed under the of Rare, Endangered, and threatened category. Various macro-invertebrate species were collected and identified from the present study area and listed in Table 3.29.

Table 3.29: Macro-invertebrates recorded from the Core and Buffer zone

	Insecta										
1	Baetis nymph		+	+	+	+	+	+	+	NA	NE
2	Caenid mayfly	+			+		+			NA	NE
3	Chironomus plumosus	+	+	+	+	+	+	+	+	NA	NE
4	Chironomus sp.	+	+	+	+	+	+	+	+	NA	NE
5	Damsel flies nymphs	+			+		+			NA	NE
6	Dragon flies nymphs	+		+	+		+	+	+	NA	NE
7	Ephydra larvae	+	+	+	+	+	+			NA	NE
8	Hirudineria glossophonia		+			+	+	+	+	NA	NE
9	Hirudineria sp.	+	+	+			+	+	+	NA	NE
10	Limnodrillus hoffmeisteri	+					+			NA	NE
11	Mayflies nymphs		+		+		+	+	+	NA	NE
12	Mosquitos larvae	+	+	+	+	+	+	+	+	NA	NE
13	Ranatra elongata	+	+			+	+	+	+	NA	NE
14	Ranatra filliformis	+		+	+	+	+	+	+	NA	NE
15	Stone flies nymphs			+	+		+			NA	NE
16	Tubifex tubifex	+	+	+		+	+	+	+	NA	NE
	Total	12	10	10	11	9	16	11	11		
	Mollusca		l	•			•				
1	Bellamya bengalensis	+		+	+	+	+	+	+	NA	NE
2	Corbicula fluminalis		+	+	+	+	+	+	+	NA	NE
3	Corbicula sp.	+	+	+	+	+	+			NA	NE
4	Gyraulus convexiculus	+		+			+	+	+	NA	NE
5	Gyraulus sp.	+	+		+	+	+		+	NA	NE

6	Lymnaea acuminata	+		+		+		+	+	NA	NE
7	Lymnaea sp.	+	+	+	+	+	+	+		NA	NE
8	Melanoides lineatus		+	+			+		+	NA	NE
9	Pila globosa(apple snail)		+		+		+		+	NA	NE
10	Pila sp.	+		+	+	+	+	+	+	NA	NE
11	Thira sp.	+	+	+			+	+	+	NA	NE
12	Thira tuberculata	+	+	+	+		+		+	NA	NE
13	Unio tigridis			+	+		+	+	+	NA	NE
14	Vivipara bengalensis			+	+	+	+	+		NA	NE
	Total	9	8	12	10	8	13	9	11		
	Source: Primary Survey da	ita of l	P&M S	Solutio	n, No	oida.				•	

iii. Amphibians

Amphibians and reptiles are commonly found at places along the margin of aquatic and terrestrial systems. The presence of water bodies like rivers, streams, etc. in the study area are providing shelter to many amphibian species. Some of the commonly reported amphibian species in the present study areas are given in Table 3.30.None of the Amphibians and Reptiles have been observed under the Rare, Endangered, and threatened category. Also, none of them are under the Schedule-I category as per Wildlife Protection Act, 1972.

Table 3.30: Amphibians and Reptiles recorded from the Core and Buffer zone

S. No	English Name	Scientific Name	S- 1	S- 2	S- 3	S- 4	S- 5	S- 6	S- 7	S- 8	Schedule Status (WPA,1972)	IUCN Status
1	Agama buberculatus	Rock Lizard	+	+	+	+	+	+	+	+	IV	LC
2	Bufo melanostictus	Common toad	+	+	+	+	+	+	+	+	IV	LC
3	Bungarus caeruleus	Common Krait	+	+	+	+	+	+	+	+	IV	LC
4	Bungarus fasciatus	Banded Krait	+	+	+	+	+	+	+	+	IV	LC
5	Euphlyctis cyanophlyctis	Indian skipper frog	+	+	+	+	+	+	+	+	IV	LC
6	Hoplobatrachus tigerinus	(Indian bullfrog).	+	+	+	+	+	+	+	+	IV	LC

7	Chamelion calcarata	Chameleon	+	+	+	+	+	+	+	+	II	LC
8	Naja naja	Indian Cobra	+	+	+	+	+	+	+	+	II	LC

Note:DD=Data Deficient, LC=Least Concern, NE=Not Evaluated.

Source: Primary Survey data of P&M Solution, Noida and Data supported by data of Department of Forest, Jamuidistrict, Bihar.

(iii) Fishes

The study area of the present Project development project has several lentic and lotic water bodies in which few are perennial and most of the water bodies are seasonal or monsoon fed. Jammuaririver is a major lotic system in the study area. Some private ponds are also present in the study area which are mainly used for the culture of fishes. All these water bodies support fish species. Fishes found in the study area are listed in Table 3.31 and their site wise species variation is shown in Fig. 3.14.

Table 3.31: Fish Fauna found in different seasonal and perennial water bodies in the study area

S.No.	Name of the Taxa	Family Name	S- 1	S- 2	S- 3	S- 4	S- 5	S- 6	S- 7	S- 8	IUCN Status	Schedule Status in WPA (1972)
1	Catla catla	Cyprinidae	+	+	+	+		+		+	VU	NA
2	Channa stiatus	Chandadae					+	+	+		LC	NA
3	Channa punctatus	Chandadae			+	+	+		+	+	LC	NA
4	Labeo bata	Cyprinidae		+		+				+	LC	NA
5	Labeo rohita	Cyprinidae	+		+	+		+			LC	NA
6	Macrobrachium malcomsoni	Palaemonidae	+		+	+	+	+	+	+	LC	NA
7	Mystus bleekri	Bagridae		+			+	+			LC	NA
8	Mystus tengara	Bagridae	+	+	+	+	+	+	+	+	LC	NA
9	Puntius sarana	Cyprinidae			+			+	+	+	LC	NA
10	Puntius sophore	Cyprinidae	+	+	+		+			+	LC	NA
11	Puntius stigma	Cyprinidae			+	+		+			LC	NA

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

12	Puntius ticto	Cyprinidae		+	+	+			+	+	LC	NA
13	Xenentodon cancila	Belonidae	+					+			LC	NA
												11/1
14	Pangasius		+	+	+	+	+	+		+	LC	
17	buchanani	Pangasiidae	•	-	-	•	'	ı		-	LC	NA
		Total	7	7	10	9	7	10	6	9		

Note: VU= Vulnerable, LC= Least Concern and NA= Not Application.

Source: Primary Survey data of P&M Solution, Noida and data supported by Department of Fisheries,

JamuiDistrict, Bihar.

3.6.13 Observations of Present Study (Flora & Fauna)

3.6.13.1 Flora

Most of the parts of the present study area (Jamui district) are agricultural fields, village land. The forest of the district comprises tropical deciduous vegetation due to high temperature and humidity. No any rare, endangered and threatened floral species have been observed from the core and buffer zone of the present study.

3.6.13.2Fauna

There are no National parks, Sanctuaries, Biosphere Reserves, Wildlife corridors, Tiger/Elephant reserves (existing as well as proposed), within 1 km buffer area as well as 5 km of the project area. No any endangered and threatened faunal species were observed from the core and buffer zone of the present study area. On the other hand, there is no any Schedule-I fauna was recorded as per the Wildlife (Protection) Act, 1972. However, care will be taken during the developmental activities if found any.

3.7 Socio-Economic Environment

Demography & Socio-Economic Features

Demography

Demography is one of the important indicators of environmental health of an area. It includes population, sex ratio, number of households, literacy, population density, etc. In order to assess the Demographic & Socio-economic features of the area, Census data 2011, for

onemajor district namedJamuiof Biharstate was compiled and placed in the form of tabulation and graphical representation.

Demography of the Jamui District

As per the census records 2011, Jamui district has a population of 17,60,405 persons followed by 9,16,064 males and 8,44,341 females respectively. Out of the total population of the district, about 8.3% population lived in urban areas while 91.7% live in rural areas. The decadal Variation of the district has been seen at 25.9% during the decade 2001-11. The Urban area of the district has attained a higher decadal Variation of 40.8% as compared to that of rural area at 24.7%. The district has a population density of 567 inhabitants per square kilometre (1,470/sq. mi)

As per 2011 census sex ratio of the district is 922 females per 1,000 males. The same for rural and urban areas of the district stands at 923 and 905 respectively. As per the census records 2011, the sex ratio of population in the age group 0-6, which works out to 956, is much higher than the sex ratio of the total population as 922for the district of Jamui. While the sex ratio of (0-6) population in the rural areas of the district is 957, the sex ratio of (0-6) population for the urban areas is only 936 females per 1000 males.

As per the census records 2011, it is observed that the proportion of scheduled castes and scheduled tribe's population to the total population of the district is found to be only 17.2 and 4.5% respectively. For rural areas, the respective proportion of scheduled castes and scheduled tribes to the total population of the district comes out to be 17.5 and 4.8% respectively. Similarly,in urban areas, the percentage of scheduled castes and scheduled tribe's population to the total population of the district comes out to 13.2 and 0.4% respectively.

It is also observed from the census records 2011, that the district has registered a literacy rate of 59.8%. As regards to rural and urban areas of the district the literacy rates have been registered 58.4&75.0% respectively. The gap in the male-female literacy rates has been 24.0% point as it is 71.2% male and 47.2% female respectively. For the district as a whole, the literacy rate of males is much higher than that of females.

Census data 2011 shows that the work participation rate (WPR) in the district is 25.3% for main workers and 16.03% for marginal workers. Proportion of non workers in the district is 58.67%.

Mother Tongue

At the time of the 2011 Census of India, 73.37% of the population in the district spoke Hindi, 6.81% Urdu, 5.94% Khortha, 3.66% Santali and 3.06% Magahi as their first language. 7.02% of the population spoke languages recorded as 'Others' under Hindi under Hindi on the census.

Religion

The population of the Jamui district during 2011 was 1,760,405. Hindus constitute 86.67 percent (1,525,746 persons) of the population in the district followed by Muslims 12.36 percent (217,621 persons). All other four major religious communities have almost negligible percentages

Methodology

In order to assess the Demographic & Socio-economic features along with the 10km distance based on field surveys and public consultations undertaken during the baseline field study period and Census records 2011, for Jamui districtof Bihar state respectively was compiled and placed in the form of tabulation and graphical representation. Entire study area is observed predominantly ruraland no town was found in the study area.

Purpose of the Study

Socio-economic study was conducted to establish the baseline demographic features and impacts due to this 'SandGhatMining Project', as operation phase of any project invariably leads to Socio-economic changes. The construction phase of any kind of project could lead to unplanned and haphazard development of slums of various size and description with little or rudimentary.

Description of Social Environment

As per the Census Records 2011, the study area has a total of 128 villages and one major Town named Jamui (NP/30 Wards) lying under Jamui District in Bihar state. Overall study area villages are falling mainly under Five (05) tehsils namely Jamui (62 villages & 01 Town), Barhat (24 villages), Lakshmipur (01 villages) and Gidhaur (11 villages), Khaira (31 villages) of Jamui district in Bihar state.

There are ten (10) villages of Jamui district in Bihar state found as uninhabited villages in the study area. There is one major town named Jamui (NP/30 Wards) found in the 10km radial study zone.

Population Distribution within 10 km radial Study Zone

As per the Census Records 2011, the total population of 10 km study zone was recorded as 4,00,773 persons of 129 villages and one major town named Jamui (NP) of Jamui district in Bihar state. Male-female wise total population was recorded as 2,09,433 males (52.3%) and 1,91,340(47.7%) females respectively.

Total number of 'Households' was observed as 70,102in the 10 km radius study zone. Scheduled Caste ('SC') population was observed as 74,182persons consisting of 38,207males (51.5%) and 35,975 females (48.5%) in the 10km study zone. Scheduled Tribes ('ST') population was also observed as 4552 persons (1.1%) consisting of 2,345 males (51.5%) and 2,207females (48.5%) in the 10 km study zone. The child population (0-6 Age) of the study area is recorded as 71,547(18.0%) and comprising of 36,970 (51.7%)males&34,577 (48.3%) females respectively.

Village wise details of population distributionare given as follows in Table 3.32 & 3.33

Table 3.32 : Village-wise Population Distribution (10km)

Name of Village/Town	No of	Tot	tal Popula	tion	Child Pop	Child Population (0 Persons Male 810 420			
	Households	Persons	Male	Female	Persons	Male	Female		
Daulatpur	850	4661	2456	2205	810	420	390		
Maniadda	417	2402	1220	1182	454	229	225		
Bhajour	112	816	448	368	111	71	40		
Garo Nawada	299	1553	794	759	239	122	117		
Lathane	334	1976	1039	937	369	202	167		
Sugi	277	1506	792	714	304	154	150		
Thegua	99	534	291	243	126	71	55		
Sonpai	632	3442	1791	1651	611	297	314		
Garsanda	836	4467	2306	2161	888	476	412		
Barar	125	755	388	367	148	79	69		
Khairi	27	143	75	68	29	14	15		
Rampur	164	871	442	429	168	79	89		
Khargpur	156	819	437	382	128	73	55		
UgniChak	51	242	138	104	18	13	5		
SihoChak	83	446	235	211	88	50	38		
Puteria	132	770	417	353	145	82	63		
Lukhri	172	924	489	435	166	87	79		
Sahur	57	280	154	126	42	21	21		
SitlaChak		•	Uninh	abited Vill	age		•		
AgabaraBarwata	1399	7063	3650	3413	1251	626	625		
Piri	61	289	143	146	68	35	33		
Abhaipur	258	1564	818	746	289	143	146		
Markata	110	596	277	319	125	61	64		
Manjura	6	39	21	18	3	3	0		
Indpe	512	2962	1548	1414	526	263	263		
Dhenkdih	73	352	158	194	56	27	29		

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Bukar	586	3042	1573	1469	546	271	275
Lotan	183	932	493	439	212	118	94
Narainpur	544	2784	1397	1387	426	199	227
Bijuahi	151	757	394	363	106	53	53
Kakan	1309	7121	3648	3473	1342	663	679
Sonai	385	2288	1203	1085	429	244	185
Dhandh	379	2272	1207	1065	381	184	197
Lakhanpur	453	2371	1279	1092	361	185	176
Partapur	321	1786	955	831	328	189	139
Rajpura	128	815	430	385	175	91	84
Marwa	311	1817	929	888	414	219	195
Dighoi	85	681	364	317	138	84	54
SemariaBikrampur	171	1188	631	557	216	117	99
AmmaSarari	704	3631	1893	1738	759	406	353
Misir Manda	148	757	397	360	139	77	62
Nim Nawada	226	1305	659	646	238	115	123
Bhat Chak	279	1459	756	703	238	117	121
Damdama	35	152	80	72	28	17	11
Sira Nawada	132	735	382	353	91	48	43
Neuri		ı	Uninha	abited Vill	age		
Lohra	866	5140	2636	2504	1029	534	495
Udaipur		•	Uninha	abited Vill	age	•	
Sultanpur	43	304	168	136	66	34	32
Amrath	1221	7175	3693	3482	1532	756	776
RamalBigha			Uninha	abited Vill	age		
MisirBigha	152	964	485	479	224	111	113
Sangthu	739	3806	1970	1836	759	382	377
Deochand Nawada			Uninha	abited Vill	age		
Bhagwana	204	1328	691	637	276	135	141
Kundri Son KurhaHarla	1142	5734	2918	2816	1116	567	549
Chhitma	28	208	109	99	55	23	32
Achari	129	872	455	417	163	77	86
Tetaria				abited Vill	age		
Arsar	1293	7635	3955	3680	1417	708	709
Dundu	279	1851	939	912	333	179	154
Jamui (NP)/30 Wards	14509	87357	46014	41343	14173	7423	6750
Barhat	1444	7630	4029	3601	1392	711	681
Bahera	684	3737	1968	1769	739	395	344
Bahera Kita Alaiya		T _		abited Vill		T	
Bishunpur	729	3963	1979	1984	846	414	432
Lakra	189	1303	674	629	191	95	96
Bangawan	177	929	483	446	174	99	75
Numar	826	4974	2617	2357	857	427	430
Kolhua	1052	5729	2946	2783	1102	567	535
Malepur	2188	12232	6477	5755	2100	1085	1015
Bhaluka	573	3178	1634	1544	718	370	348
Mohanpur	38	249	125	124	39	19	20

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Patauna	505	2291	1204	1087	391	215	176
Narsota	66	412	220	192	92	55	37
Achhra	217	1100	586	514	119	62	57
Phulwaria	229	1378	696	682	291	155	136
Nasrichak	47	471	253	218	97	52	45
Katauna	1563	8358	4374	3984	1463	772	691
Sukhlewa	147	836	435	401	168	82	86
Guguldih (Part in Gidhaur)*	1499	7423	3854	3569	1468	747	721
Darha	1203	6476	3374	3102	1124	569	555
Lathlathwa	40	271	136	135	38	21	17
Labhet	255	1518	827	691	218	127	91
Bhandara	385	2633	1393	1240	447	228	219
Lakhai	752	4215	2191	2024	743	401	342
Harla	776	4155	2139	2016	706	362	344
Simaria	131	617	329	288	91	46	45
Kolhua	466	2930	1543	1387	560	303	257
Kumardih	259	1471	755	716	258	128	130
Kharhua	163	911	470	441	177	94	83
Mahuli	569	2961	1547	1414	534	266	268
Sewa	1510	9151	4888	4263	1613	855	758
Ratanpur	2015	10968	5687	5281	1902	952	950
Kundhur	730	3519	1812	1707	692	362	330
Nayagaon	281	1268	689	579	228	118	110
Genadih	516	2813	1464	1349	482	249	233
Guguldih (Part in Barhat)*	1324	7698	4008	3690	1464	738	726
Chandabank			Uninha	abited Vill	age		
Singarpur	407	2331	1243	1088	420	237	183
Ballopur	222	1490	761	729	296	151	145
Naudiha	403	2281	1205	1076	426	241	185
Suraundha	72	341	172	169	93	41	52
Nauniatanr	67	376	192	184	88	44	44
Amari	598	3370	1767	1603	670	338	332
Khutauna	278	1342	721	621	235	117	118
Dharampur	319	1792	935	857	365	183	182
Mahapur Khurd	64	331	162	169	77	37	40
Kharui	233	1441	740	701	264	134	130
Dumarkola	583	3775	2024	1751	710	382	328
Khaira	1544	9581	5068	4513	1611	849	762
Gopalpur	612	3651	1908	1743	757	389	368
Karan Nawada	146	659	331	328	121	55	66
Kendih	568	3268	1744	1524	522	273	249
BaribagJaljoga	356	2240	1146	1094	399	211	188
Fatehpur	594	3605	1882	1723	738	375	363
Baheratari		T		abited Vill		1	T
JorbahaDharampur	338	2074	1088	986	413	214	199
Bhojpur	119	867	444	423	114	46	68
Sagdaha	291	1631	868	763	242	124	118

Bhandra	241	1317	661	656	212	102	110		
Chancho	137	781	422	359	121	65	56		
Dabil	822	5095	2668	2427	792	399	393		
Durgodih			Uninha	abited Vill	age				
Changodih	362	2603	1365	1238	413	217	196		
Nariana	332	1927	1017	910	394	210	184		
Jogajhingoal	433	2704	1393	1311	503	242	261		
Jitjhingoi	1157	6557	3402	3155	1093	564	529		
Banpur	879	5836	3068	2768	1062	565	497		
TOTAL (10km)	70102	400773	209433	191340	71547	36970	34577		
Source-Census of India, 2011									

Table 3.33: Village-wise SC & STPopulation Distribution (10km)

Name of Village/Town	Total	Sch	eduled Ca	astes	Sch	eduled Tr	ibes
g.,	Population	Persons	Males	Females	Persons	Males	Females
Daulatpur	4661	928	485	443	0	0	0
Maniadda	2402	431	220	211	0	0	0
Bhajour	816	89	48	41	0	0	0
Garo Nawada	1553	264	121	143	3	2	1
Lathane	1976	310	153	157	0	0	0
Sugi	1506	222	120	102	0	0	0
Thegua	534	210	117	93	4	2	2
Sonpai	3442	866	442	424	2	0	2
Garsanda	4467	1054	550	504	0	0	0
Barar	755	148	77	71	4	3	1
Khairi	143	47	23	24	0	0	0
Rampur	871	368	188	180	3	1	2
Khargpur	819	294	163	131	1	1	0
UgniChak	242	0	0	0	0	0	0
SihoChak	446	231	126	105	0	0	0
Puteria	770	238	124	114	1	1	0
Lukhri	924	61	33	28	0	0	0
Sahur	280	0	0	0	0	0	0
SitlaChak			Uninh	abited Vil	lage		
AgabaraBarwata	7063	1744	881	863	3	2	1
Piri	289	269	134	135	0	0	0
Abhaipur	1564	223	108	115	0	0	0
Markata	596	0	0	0	0	0	0
Manjura	39	0	0	0	0	0	0
Indpe	2962	610	312	298	0	0	0
Dhenkdih	352	0	0	0	0	0	0
Bukar	3042	721	362	359	0	0	0
Lotan	932	624	329	295	0	0	0
Narainpur	2784	339	166	173	0	0	0
Bijuahi	757	132	69	63	2	0	2
Kakan	7121	1933	971	962	0	0	0
Sonai	2288	725	387	338	2	1	1
_	•		1	•	•		

2272	412	207	205	6	3	3
_						1
						0
						0
						4
				-		0
			_		_	0
						0
					_	0
						1
						0
						0
				_	_	0
733	230					
5140	597				0	0
3110	371					
304	0				0	0
	_	_	_	_		0
7175	1311			_	1	U
964	264				1	0
						7
2000	0.15			Ī		,
1328	132				0	0
						2
		_			-	0
			_			1
0,2	001			-		
7635	905				3	3
						0
			4202	110	42	68
						696
						161
3963	2045	1040	1005		286	300
1303	566	281	285	1	1	0
929	109	50	59	0	0	0
4974	640	320	320	10	7	3
5729	2022	1033	989	330	163	167
12232	1943	991	952	5	2	3
3178	565	286	279	739	385	354
249	15	6	9	0	0	0
2291	498	252	246	0	0	0
412	0	0	0	4	2	2
	1					0
1100	175	90	85	0	0	0
1100 1378	175 125	90 55	85 70	0	0	0
	1303 929 4974 5729 12232 3178 249 2291	2371 408 1786 292 815 147 1817 612 681 0 1188 64 3631 657 757 161 1305 399 1459 120 152 146 735 230 5140 597 304 0 7175 1311 964 264 3806 645 1328 132 5734 1845 208 0 872 351 7635 905 1851 0 87357 8895 7630 2307 3737 654 3963 2045 1303 566 929 109 4974 640 5729 2022 1232 1943 3178 565 2	2371 408 205 1786 292 154 815 147 72 1817 612 308 681 0 0 1188 64 33 3631 657 353 757 161 79 1305 399 196 1459 120 64 152 146 76 735 230 114 Uninh 5140 597 309 Uninh 5140 597 309 Uninh 304 0 0 7175 1311 688 Uninh 964 264 127 3806 645 337 Uninh 1328 132 67 5734 1845 941 208 0 0 872 351 176 Uninh 7635 905 441 18	2371 408 205 203 1786 292 154 138 815 147 72 75 1817 612 308 304 681 0 0 0 1188 64 33 31 3631 657 353 304 757 161 79 82 1305 399 196 203 1459 120 64 56 152 146 76 70 735 230 114 116 Uninhabited Vil 304 0 0 0 7175 1311 688 623 Uninhabited Vil 304 0 0 0 7175 1311 688 623 Uninhabited Vil 3806 645 337 308 Uninhabited Vil 1328 132 67 6	2371 408 205 203 2 1786 292 154 138 5 815 147 72 75 0 1817 612 308 304 9 681 0 0 0 0 0 1188 64 33 31 0 0 0 0 0 0 0 0 0	2371 408 205 203 2 1 1786 292 154 138 5 5 5 815 147 72 75 0 0 0 1817 612 308 304 9 5 681 0 0 0 0 0 0 0 0 0

Katauna	8358	1814	920	894	12	7	5
Sukhlewa	836	259	124	135	1	0	1
Guguldih (Part in Gidhaur)*	7423	1489	748	741	0	0	0
Darha	6476	1412	739	673	0	0	0
Lathlathwa	271	10	6	4	0	0	0
Labhet	1518	315	151	164	7	5	2
Bhandara	2633	837	447	390	1	0	1
Lakhai	4215	1891	973	918	1	0	1
Harla	4155	1321	698	623	1	0	1
Simaria	617	403	217	186	0	0	0
Kolhua	2930	294	162	132	2	2	0
Kumardih	1471	351	180	171	1	0	1
Kharhua	911	196	96	100	0	0	0
Mahuli	2961	512	281	231	1	1	0
Sewa	9151	2186	1143	1043	2	0	2
Ratanpur	10968	1614	828	786	16	9	7
Kundhur	3519	1100	566	534	3	2	1
Nayagaon	1268	367	188	179	1	0	1
Genadih	2813	358	177	181	0	0	0
Guguldih (Part in Barhat)*	7698	1163	620	543	497	230	267
Chandabank		ı	Uninh	abited Vil	lage		
Singarpur	2331	533	289	244	1	1	0
Ballopur	1490	206	104	102	0	0	0
Naudiha	2281	236	115	121	0	0	0
Suraundha	341	276	143	133	0	0	0
Nauniatanr	376	247	129	118	0	0	0
Amari	3370	726	367	359	0	0	0
Khutauna	1342	257	138	119	0	0	0
Dharampur	1792	346	161	185	0	0	0
Mahapur Khurd	331	331	162	169	0	0	0
Kharui	1441	315	161	154	244	127	117
Dumarkola	3775	727	389	338	3	2	1
Khaira	9581	1331	692	639	12	7	5
Gopalpur	3651	1138	607	531	2	2	0
Karan Nawada	659	0	0	0	0	0	0
Kendih	3268	390	208	182	0	0	0
BaribagJaljoga	2240	309	152	157	0	0	0
Fatehpur	3605	1167	591	576	4	3	1
Baheratari			Uninh	abited Vil	lage		
JorbahaDharampur	2074	286	148	138	0	0	0
Bhojpur	867	28	13	15	0	0	0
Sagdaha	1631	201	111	90	0	0	0
Bhandra	1317	143	77	66	0	0	0
Chancho	781	212	115	97	0	0	0
Dabil	5095	699	368	331	3	2	1
Durgodih			Uninh	abited Vil	lage		
Changodih	2603	328	176	152	1	0	1
			•				

6557	1399	710	c01	_	_	
0001	1377	718	681	6	3	3
5836	175	79	96	0	0	0
400773	74182	38207	35975	4552	2345	2207
_	400773	400773 74182	400773 74182 38207	400773 74182 38207 35975	400773 74182 38207 35975 4552	

Sex Ratio

The 'Sex Ratio' of the study area is a numeric relationship between females and males of an area and bears paramount importance in the present day scenario where the un-ethnic predetermination of sex and killing of female foetus during pregnancy is practiced by unscrupulous medical practitioners against the rule of the law of the country. It is evident that by contrast the practice of female foeticide is not prevalent in the study area.

The 'Sex Ratio' was observed as 922females per 1000 males in the District. The same was recorded as 914females for every 1000 males in the study area. The child (0-6 yr age) sex ratio of the stud area was observed as 935 female children per 1000 male children

The village wise male-female population distribution for the study area is depicted and shown by graphical representation in **Table 3.34 & Figure 3.7**

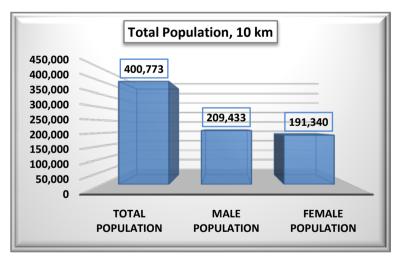


Figure 3.7: Male-Female Wise Population Distribution

Scheduled Caste & Scheduled Tribe Population

On the basis of the village wise SC & ST population distribution of the study area during 2011, the 'Scheduled Castes' population was observed as 74182 persons consisting of 38207 males and 35975 females respectively in the study area which accounts as 18.5% to the total population (4,00,773 persons) of the study area. Scheduled Tribes ('ST') population was observed as 4,552 persons, accounts as 1.1% to the total population of the study zone consisting of 2,345 males (51.5%)

and 2,207females (48.5%) in the 10km radius study zone. It implies that the rest 80.4% of the total population belongs to the general category.

Male-female wise distribution of 'SC' & 'ST' population in the study area is graphically shown in **Figure 3.8** . & **3.9** as follows.

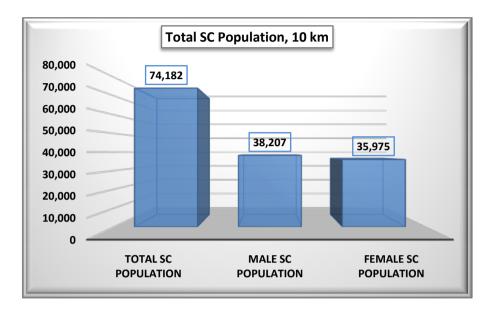
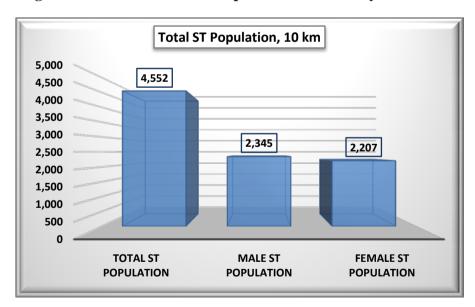
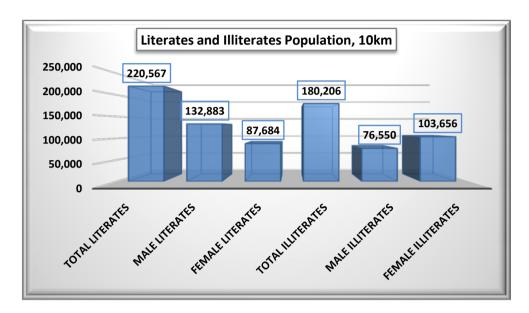


Figure 3.8 : Scheduled Caste Population in the Study Area




Figure 3.9 : Scheduled Tribes Population in the Study Area

Literacy Rate

Literacy level is quantifiable indicator to assess the development status of an area or region. Male-Female wise literates and illiterate's population is represented in **Table 3.34** Total literate's population was recorded as 220567 persons (55.0%) in the study area. **Table 3.34** reveals that Male-Female wise literates are observed as 1,32,883&87,684 persons

respectively, implies that the 'Literacy Rate' is recorded as 55.0% with male-female wise percentages being 33.2% &22.0% respectively.

The Male-Female wise graphical representation of literates &illiterate's population in study area villages/town is shown in **Figure 3.10**

 ${\bf Figure 3.10:} {\bf Male\text{-}Female\ Wise\ Distribution\ of\ Literates\ \&\ Illiterates}$

Table 3.34 :Male-Female Wise Literates and Illiterates(10km)

Name of Village/Town	Total		Literates			Illiterates	
	Population	Persons	Males	Females	Persons	Males	Females
Daulatpur	4661	2443	1493	950	2218	963	1255
Maniadda	2402	1297	785	512	1105	435	670
Bhajour	816	595	339	256	221	109	112
Garo Nawada	1553	1117	610	507	436	184	252
Lathane	1976	1008	665	343	968	374	594
Sugi	1506	778	523	255	728	269	459
Thegua	534	151	117	34	383	174	209
Sonpai	3442	1851	1139	712	1591	652	939
Garsanda	4467	2300	1448	852	2167	858	1309
Barar	755	454	251	203	301	137	164
Khairi	143	76	44	32	67	31	36
Rampur	871	518	272	246	353	170	183
Khargpur	819	434	267	167	385	170	215
UgniChak	242	221	124	97	21	14	7
SihoChak	446	267	149	118	179	86	93
Puteria	770	411	250	161	359	167	192
Lukhri	924	544	349	195	380	140	240
Sahur	280	161	118	43	119	36	83
SitlaChak			Uninl	nabited Vill	age		
AgabaraBarwata	7063	3754	2284	1470	3309	1366	1943
Piri	289	129	82	47	160	61	99
Abhaipur	1564	932	579	353	632	239	393
Markata	596	298	182	116	298	95	203
Manjura	39	26	14	12	13	7	6

Indpe	2962	1668	1019	649	1294	529	765	
Dhenkdih	352	213	115	98	139	43	96	
Bukar	3042	1555	948	607	1487	625	862	
Lotan	932	346	208	138	586	285	301	
Narainpur	2784	1667	1006	661	1117	391	726	
Bijuahi	757	564	324	240	193	70	123	
Kakan	7121	3227	1919	1308	3894	1729	2165	
Sonai	2288	1016	590	426	1272	613	659	
Dhandh	2272	1237	767	470	1035	440	595	
Lakhanpur	2371	1423	915	508	948	364	584	
Partapur	1786	944	576	368	842	379	463	
Rajpura	815	301	199	102	514	231	283	
Marwa	1817	691	425	266	1126	504	622	
Dighoi	681	325	211	114	356	153	203	
SemariaBikrampur	1188	618	419	199	570	212	358	
AmmaSarari	3631	1918	1139	779	1713	754	959	
Misir Manda	757	402	235	167	355	162	193	
Nim Nawada	1305	636	378	258	669	281	388	
Bhat Chak	1459	839	518	321	620	238	382	
Damdama	152	71	50	21	81	30	51	
Sira Nawada	735	202	114	88	533	268	265	
Neuri		•	Uninl	nabited Vill	age	•		
Lohra	5140	2633	1602	1031	2507	1034	1473	
Udaipur	Uninhabited Village							
Sultanpur	304	77	62	15	227	106	121	
Amrath	7175	3321	2009	1312	3854	1684	2170	
RamalBigha			Uninl	nabited Vill	age			
MisirBigha	964	347	230	117	617	255	362	
Sangthu	3806	2102	1196	906	1704	774	930	
Deochand Nawada				nabited Vill				
Bhagwana	1328	619	434	185	709	257	452	
Kundri Son KurhaHarla	5734	3226	1846	1380	2508	1072	1436	
Chhitma	208	44	40	4	164	69	95	
Achari	872	432	261	171	440	194	246	
Tetaria		_		nabited Vill				
Arsar	7635	4329	2485	1844	3306	1470	1836	
Dundu	1851	1101	635	466	750	304	446	
Jamui (NP)/30 Wards	87357	56201	32257	23944	31156	13757	17399	
Barhat	7630	3010	1961	1049	4620	2068	2552	
Bahera	3737	1774	1162	612	1963	806	1157	
Bahera Kita Alaiya				nabited Vill				
Bishunpur	3963	1663	1049	614	2300	930	1370	
Lakra	1303	848	506	342	455	168	287	
Bangawan	929	479	294	185	450	189	261	
Numar	4974	2567	1641	926	2407	976	1431	
Kolhua	5729	2514	1550	964	3215	1396	1819	
Malepur	12232	7118	4283	2835	5114	2194	2920	
Bhaluka	3178	1069	748	321	2109	886	1223	
Mohanpur	249	97	65	32	152	60	92	
Patauna	2291 412	1258	770	488	1033	434	599	
Narsota	1100	244 741	136	108	168 359	84 163	84	
Achhra Phulwaria		1	423	318	697		196	
rнигwaпа	1378	681	409	272	09/	287	410	

Nasrichak	471	246	150	96	225	103	122
Katauna	8358	4919	2943	1976	3439	1431	2008
Sukhlewa	836	475	276	199	361	159	202
Guguldih (Part in Gidhaur	030	773	270	1//	301	137	202
)*	7423	3893	2364	1529	3530	1490	2040
Darha	6476	2991	1886	1105	3485	1488	1997
Lathlathwa	271	124	82	42	147	54	93
Labhet	1518	988	598	390	530	229	301
Bhandara	2633	1246	827	419	1387	566	821
Lakhai	4215	2213	1354	859	2002	837	1165
Harla	4155	2564	1513	1051	1591	626	965
Simaria	617	302	178	124	315	151	164
Kolhua	2930	1633	1033	600	1297	510	787
Kumardih	1471	907	523	384	564	232	332
Kharhua	911	454	282	172	457	188	269
Mahuli	2961	1547	972	575	1414	575	839
Sewa	9151	4995	3186	1809	4156	1702	2454
Ratanpur	10968	6215	3782	2433	4753	1905	2848
Kundhur	3519	1763	1037	726	1756	775	981
Nayagaon	1268	691	457	234	577	232	345
Genadih	2813	1626	977	649	1187	487	700
Guguldih (Part in Barhat)*	7698	3570	2332	1238	4128	1676	2452
Chandabank				nabited Vill		l .	I .
Singarpur	2331	1143	693	450	1188	550	638
Ballopur	1490	630	407	223	860	354	506
Naudiha	2281	1457	816	641	824	389	435
Suraundha	341	121	61	60	220	111	109
Nauniatanr	376	143	78	65	233	114	119
Amari	3370	1703	1114	589	1667	653	1014
Khutauna	1342	871	545	326	471	176	295
Dharampur	1792	957	571	386	835	364	471
Mahapur Khurd	331	154	69	85	177	93	84
Kharui	1441	723	433	290	718	307	411
Dumarkola	3775	1931	1168	763	1844	856	988
Khaira	9581	5566	3383	2183	4015	1685	2330
Gopalpur	3651	2092	1209	883	1559	699	860
Karan Nawada	659	524	272	252	135	59	76
Kendih	3268	1873	1161	712	1395	583	812
BaribagJaljoga	2240	1009	627	382	1231	519	712
Fatehpur	3605	1729	1041	688	1876	841	1035
Baheratari			Uninh	nabited Vill	age		
JorbahaDharampur	2074	725	491	234	1349	597	752
Bhojpur	867	388	250	138	479	194	285
Sagdaha	1631	1082	653	429	549	215	334
Bhandra	1317	767	467	300	550	194	356
Chancho	781	488	304	184	293	118	175
Dabil	5095	2582	1698	884	2513	970	1543
Durgodih				nabited Vill			
Changodih	2603	1692	977	715	911	388	523
Nariana	1927	1004	616	388	923	401	522
Jogajhingoal	2704	1329	818	511	1375	575	800
Jitjhingoi	6557	3402	2172	1230	3155	1230	1925
Banpur	5836	2997	1824	1173	2839	1244	1595

			TIT
าลเ	nto	er.	·III

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

TOTAL (10km)	400773	220567	132883	87684	180206	76550	103656
	Sc	ource-Censu	s of India, 2	011			

Economic Profile of Jamui District:

Jamui is a district among 38 districts of Bihar state, India. The district was formed on 21 February 1991, when it was separated from Munger district.

The economy of the district is mainly based on agriculture. Almost all people of the district is engaged in agriculture since it has no big industries and factories. Every year a huge chunk of revenue comes from the agricultural products grown in the district. Some of its chief agricultural products are paddy, wheat, lentils etc. The district is not very developed educationally due to lack of educational institutions in the district compels its students to go to other places inorder to take education.

In 2006 the Ministry of Panchayati Raj named Jamui one of the country's 250 most backward districts (out of a total of 640). It is one of the 36 districts in Bihar currently receiving funds from the Backward Regions Grant Fund Programme (BRGF).

Workers Scenario:

Occupational studied to assess the skills of people in the study area. Occupational pattern helps in identifying major economic activities of the area. In the study area the Main and Marginal Workers population was observed as 97,369(24.0%) and 48,488(12.0%) to the total population (4,00,773), while the remaining 254916(64.0%) persons were recorded as non-workers. Thus it implies that the semi-skilled and non-skilled work-force required in study area for the project is available in aplenty.

The village-wise main and marginal worker's population with further classification as casual, agricultural, households and other workers is shown as follows in **Table 3.35**

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Table 3.35 :Village-wise Occupational Pattern (10km)

Name of the	MAIN	MAIN_C	MAIN A	MAIN H	MAIN O	MARG	MARG	MARG	MARG	MARG
Village/Town	WORK_P	L_P	L_P	H_P	T_P	WORK_P	CL_P	AL_P	HH_P	OT_P
Daulatpur	917	88	199	80	550	519	56	368	25	70
Maniadda	575	136	258	38	143	203	83	108	4	8
Bhajour	149	48	8	0	93	105	1	65	1	38
Garo Nawada	321	124	102	2	93	212	3	203	2	4
Lathane	141	14	17	9	101	611	44	420	45	102
Sugi	208	9	133	22	44	40	0	33	4	3
Thegua	20	2	15	0	3	253	4	239	0	10
Sonpai	752	316	228	40	168	155	38	14	3	100
Garsanda	1018	242	324	77	375	980	78	669	112	121
Barar	122	2	0	6	114	173	16	5	32	120
Khairi	49	8	39	0	2	1	0	1	0	0
Rampur	156	35	47	0	74	180	1	7	1	171
Khargpur	161	27	128	0	6	77	0	72	0	5
UgniChak	68	53	0	1	14	0	0	0	0	0
SihoChak	33	10	14	0	9	76	5	69	0	2
Puteria	130	50	22	4	54	130	12	106	0	12
Lukhri	298	50	178	31	39	142	14	108	4	16
Sahur	10	1	0	0	9	90	10	67	0	13
SitlaChak					Uninhabi	ted Village				
AgabaraBarwata	1157	338	474	18	327	1270	150	992	17	111
Piri	87	0	83	4	0	52	0	52	0	0
Abhaipur	283	187	41	0	55	246	141	86	4	15
Markata	141	27	3	13	98	91	15	36	24	16
Manjura	7	2	2	0	3	7	0	0	7	0
Indpe	683	204	381	21	77	273	64	151	9	49
Dhenkdih	154	95	8	2	49	31	7	13	2	9
Bukar	661	174	98	68	321	813	13	669	49	82

Page

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Lotan	250	73	172	0	5	20	2	18	0	0
Narainpur	503	0	461	3	39	422	38	315	1	68
Bijuahi	169	6	120	5	38	27	0	19	0	8
Kakan	1324	218	979	13	114	1474	122	683	90	579
Sonai	579	55	383	23	118	286	14	207	4	61
Dhandh	444	64	319	2	59	252	47	164	6	35
Lakhanpur	546	209	237	1	99	215	39	161	3	12
Partapur	282	39	146	3	94	243	4	231	0	8
Rajpura	106	4	56	5	41	125	0	112	1	12
Marwa	540	67	431	9	33	48	5	21	3	19
Dighoi	46	0	35	0	11	122	3	117	0	2
SemariaBikrampur	263	131	93	3	36	271	15	142	85	29
AmmaSarari	79	34	6	3	36	1408	102	1237	35	34
Misir Manda	197	57	101	6	33	190	4	44	138	4
Nim Nawada	404	164	216	2	22	1	1	0	0	0
Bhat Chak	399	124	139	74	62	138	14	67	26	31
Damdama	42	1	41	0	0	33	0	33	0	0
Sira Nawada	143	83	49	0	11	89	5	12	0	72
Neuri					Uninhabi	ited Village				
Lohra	1676	622	919	13	122	140	20	104	4	12
Udaipur					Uninhabi	ited Village				
Sultanpur	251	248	0	3	0	9	9	0	0	0
Amrath	1518	257	650	34	577	838	49	474	21	294
RamalBigha					Uninhabi	ted Village				
MisirBigha	291	1	283	1	6	38	3	35	0	0
Sangthu	807	412	274	4	117	913	238	621	4	50
Deochand Nawada					Uninhabi	ited Village				
Bhagwana	55	50	3	0	2	521	32	480	0	9
Kundri Son KurhaHarla	809	330	370	35	74	1686	225	1426	8	27

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Chhitma	96	95	0	0	1	1	1	0	0	0
Achari	382	115	261	0	6	7	0	5	0	2
Tetaria					Uninhabi	ted Village	•	•		
Arsar	1374	581	584	12	197	582	77	450	7	48
Dundu	245	183	31	3	28	213	135	53	0	25
Jamui (NP)/30										
Wards	18728	1404	3533	965	12826	6555	479	2612	648	2816
Barhat	3600	256	2834	314	196	219	3	187	19	10
Bahera	932	200	350	156	226	360	8	230	4	118
Bahera Kita Alaiya					Uninhabi	ted Village				
Bishunpur	844	117	592	18	117	784	17	691	14	62
Lakra	319	17	250	8	44	192	0	72	6	114
Bangawan	187	103	14	1	69	238	169	64	0	5
Numar	1324	613	488	20	203	587	125	393	52	17
Kolhua	1605	132	1287	51	135	959	15	792	12	140
Malepur	3313	852	1086	74	1301	802	403	236	34	129
Bhaluka	1239	230	954	5	50	201	9	116	6	70
Mohanpur	4	2	0	0	2	95	0	81	0	14
Patauna	557	122	375	5	55	671	95	317	5	254
Narsota	113	31	14	0	68	0	0	0	0	0
Achhra	378	101	109	2	166	186	97	87	0	2
Phulwaria	267	66	183	1	17	456	122	328	1	5
Nasrichak	42	24	17	0	1	98	14	19	4	61
Katauna	2380	1337	558	84	401	1390	355	641	177	217
Sukhlewa	300	92	201	7	0	76	3	65	6	2
Guguldih (Part in										
Gidhaur)*	1966	144	1071	391	360	1131	32	710	237	152
Darha	1951	378	1422	43	108	782	286	329	122	45
Lathlathwa	140	13	114	1	12	2	0	2	0	0
Labhet	178	98	23	4	53	144	4	132	2	6

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Bhandara	957	628	309	5	15	41	4	23	0	14
Lakhai	675	351	248	0	76	623	6	602	2	13
Harla	944	185	656	8	95	794	18	569	7	200
Simaria	194	75	111	3	5	104	4	100	0	0
Kolhua	564	212	287	25	40	350	4	293	46	7
Kumardih	405	147	174	16	68	207	43	128	4	32
Kharhua	291	109	42	75	65	78	5	27	13	33
Mahuli	1142	133	640	34	335	310	4	265	18	23
Sewa	3046	674	1223	937	212	654	42	486	87	39
Ratanpur	2943	1044	1322	111	466	992	244	299	202	247
Kundhur	1264	428	788	3	45	287	65	192	16	14
Nayagaon	149	131	5	0	13	172	3	160	2	7
Genadih	769	516	203	5	45	306	45	126	40	95
Guguldih (Part in										
Barhat)*	3231	966	1025	945	295	888	310	354	138	86
Chandabank	Uninhabited Village									
Singarpur	711	146	515	2	48	30	5	19	0	6
Ballopur	364	104	248	0	12	32	0	29	2	1
Naudiha	419	101	226	18	74	349	117	204	4	24
Suraundha	160	0	157	0	3	30	0	30	0	0
Nauniatanr	133	0	132	0	1	70	0	70	0	0
Amari	797	123	577	33	64	544	22	487	20	15
Khutauna	319	108	183	2	26	341	29	290	7	15
Dharampur	381	118	174	8	81	295	57	224	1	13
Mahapur Khurd	4	0	0	0	4	160	0	92	68	0
Kharui	304	73	168	35	28	6	1	0	4	1
Dumarkola	1354	583	523	194	54	167	19	111	28	9
Khaira	2996	432	948	893	723	534	189	144	68	133
Gopalpur	1182	328	646	38	170	289	116	144	7	22
Karan Nawada	77	22	54	0	1	194	0	194	0	0

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Kendih	703	279	131	16	277	516	6	355	45	110
BaribagJaljoga	484	15	429	12	28	254	40	188	3	23
Fatehpur	410	196	129	30	55	1335	70	615	288	362
Baheratari	Uninhabited Village									
JorbahaDharampur	306	49	163	33	61	339	15	243	59	22
Bhojpur	498	264	32	201	1	67	15	10	42	0
Sagdaha	439	217	111	5	106	59	8	25	1	25
Bhandra	179	34	130	0	15	193	4	188	0	1
Chancho	85	9	30	32	14	267	5	112	76	74
Dabil	1122	96	700	54	272	722	29	393	89	211
Durgodih					Uninhabi	ted Village				
Changodih	411	152	211	0	48	432	15	403	2	12
Nariana	461	49	301	11	100	186	1	175	4	6
Jogajhingoal	470	114	153	73	130	360	105	118	85	52
Jitjhingoi	1875	437	1061	108	269	1331	217	759	253	102
Banpur	1663	303	847	33	480	610	36	454	52	68
TOTAL (10km)	97369	22748	41648	6841	26132	48488	6113	29588	3913	8874

Source-Census of India, 2011

ABBREVIATIONS:

MAIN WORKERS POPULATION: MAIN WORK_P: Main worker's total population, MAIN_CL_P: Main cultivated labour population, MAIN_AL_P: Main agricultural labour population, MAIN_HH_P: Main workers

population involved in household industries, MAIN_OT_P: Main other worker's population

MARGINAL WORKERS POPULATION:

MARG WORK_P: Marginal worker's total population, MARG_CL_P: Marginal cultivated labors total population, MARG_AL_P: Marginal agricultural labors population, MARG_HH_P: Marginal workers involved in

household industries, MARG_OT_P: Marginal other workers Population

Distribution of work participation rate of the study area population is shown in **Table 3.36** as follows;

Table 3.36 : Distribution of Work Participation Rate(10km)

Occupation Class	Year, 2011					
Main Workers	97,369 (24.0%)					
Male	74,062(76.0%)					
Female	23,307(24.0%)					
Marginal Workers	48,488(12.0%)					
Male	25,528(52.6%)					
Female	22,960(47.4%)					
Non-Workers	2,54,916(64.0%)					
Male	1,09,843 (43.0%)					
Female	1,45,073(57.0%)					
Total Population (10km)	4,00,773					
Source: Census of India Records, 2011						

Graphical representation of Workers Scenario is given below as Figure 3.11

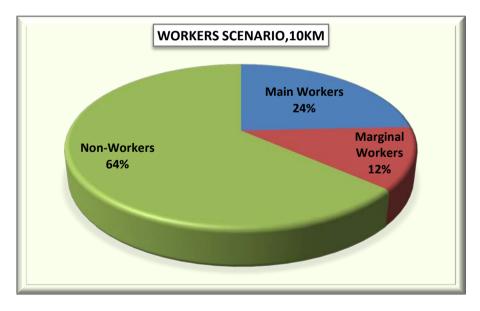


Figure 3.11: Workers Scenario of Study Area

Composition of Main Workers:

The The 'Main Workers' were observed as 97369persons (24.0%) to the total population (4,00773) of the study area and its composition is made-up of Casual laborers as 22748

Page | 104

(23.0%), Agricultural laborers as 41648(43.0%), Household workers 6841(7.0%) and other workers as 26132(27.0%) respectively.

Composition of Main workers is shown below as Figure 3.12

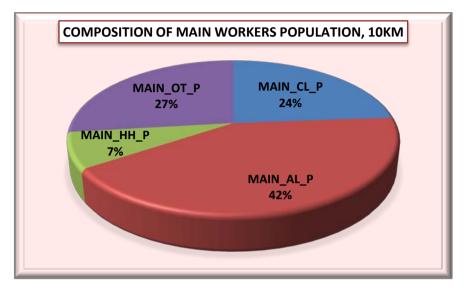


Figure 3.12: Composition of Main Workers Population

Composition of Marginal Workers:

The total marginal workers are observed as 48488 which constitute 12.0% to the total population (4,00,773) comprising of Marginal Casual Laborers as 6,113 (13.0%), Marginal Agricultural Laborers as 29,588(61.0%), Marginal Household laborers as 3,913 (8.0%) and marginal other workers were also observed as 8,874 (18.0%) of the total marginal workers respectively.

Details about marginal workers in the study area are tabulated in **Table 3.37**. Composition of Marginal workers is shown in **Figure 3.13** as follows.

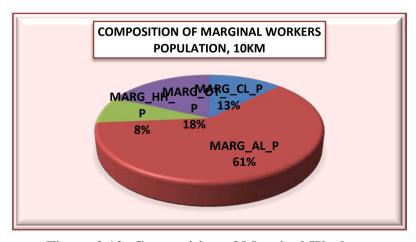


Figure 3.13 : Composition of Marginal Workers

Ш

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Composition of Non-Workers:

The total Non-worker's population was observed as 2,54,916which accounts64.0% to the total population (4,00,773) of the study area. Male-female wise Non-worker's population was recorded as 109843 Males (43.0%) and 1,45,073Females (57.0%) respectively.

Details about Total Non-workers in the study area are compiled in **Table 3.37** Graphical representation of Non-worker's population is shown as follows in **Figure 3.14**

Table 3.37: Composition of Non-Workers

	Non-Workers Population											
Persons	Persons Males Females											
2,54,916	1,09,843 (43.0%)	1,45,073(57.0%)										

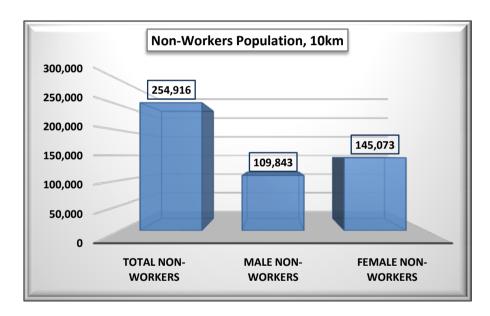


Figure 3.14: Composition of Non-Workers

Basic Infrastructure Facilities Availability(as per the census records of 2011)

A review of basic infrastructure facilities (*Amenities*) available in the study area has been done on the basis of the field survey and Census records, 2011 for the study area inhabited villages of JamuiDistrict in Bihar state. The study area has average level of basic infrastructure facilities like educational, medical, potable water and power supply and transport communication network.

As per the Census Records 2011, the study area has a total of 128 villages and one major Town named Jamui (NP/30 Wards) lying under Jamui District in Bihar state. Overall study area villages are falling mainly under Five (05) tehsils namely Jamui (62 villages & 01 Town), Barhat (24

Page |

villages), Lakshmipur (01 villages) and Gidhaur (11 villages), Khaira (31 villages) of Jamui district in Bihar state.

There are ten (10) villages of Jamui district in Bihar state found as uninhabited villages in the study area. There is one major town named Jamui (NP/30 Wards) found in the 10km radial study zone.

Educational Facilities

There is a total no. of 176 Primary schools existing in the 10km radius study area. About 86 no of Middle schools are foundin the study area. About 12Higher Secondary School (SS) and 3Senior Secondary School (SSS) facility is available in the study area. The educational facilities have been further strengthening now and a number of private public schools and colleges are also functioning in the surroundings of the study area. Besides, there are Engineering and Medical colleges available in Towns and District headquarters only. Higher education facilities are available in Towns of the district. There is a considerable improvement in educational facility. The villages of the study area have no such facilities can reach within 5to 10km range.

Availability of University Education in Jamui District

There are several affiliated and constituted colleges of the TilkaManjhi University, Bhagalpur which imparts under graduate and post graduate education in the district. IGNOU (Indira Gandhi National Open University) has opened study center K.K.M College in Jamui where one can study many distance courses of under graduate, post graduate and vocational etc.

Medical Facilities

The medical facilities are provided by different agencies like Govt. & Private individuals and voluntary organizations in the study area. As per the census 2011, only 14no of primary health centersexistin the study area; most of the study area villages depend upon the towns & district HQ of the study area having such facility. No community health centre exists in the study area. Only 27no of Primary Health Sub-Centers exists in the villages of the study area. Only 14 no of Mother & Child Welfare Centersarefound in the study area. Noallopathic hospitalexists in the study area. Only 14medical dispansariesand Family Welfare Centerswerefound in the study area. Overall study area villages are served by moderate level of medical facilities. Specialized medical facilities are available only in towns and District Headquarter (HQ) only.

Potable Water Facilities

Potable water facility is available in most of the villages of the study area. The entire study area has average level of potable water facilities. Hand Pump(HP) water facility is commonly observed in the study area as potable water facility. Out of the total 129 villages/towns,only41 villages (31.8%) are

Page | III

served with River/Canal water in the study area. As per the census records 2011, no village was foundserved with Tank/Pond/Lake as potable water facility in the study area.

Communication, Road & Transport Facilities

Apart from Post &Telegraph Office (PTO) services, transport is the main communication linkage in the study area. Compiled census 2011, data shows that the study area has good postal facilities in the 10km radius zone. About 38 villages(29.5%) were foundserving with Post Office facilities in the study area, remaining villages are depending upon towns of the study area. The study area has average rail and road network, passes from the area.

About 9villages werefound with railway station facility in the study area. Site is well connected by National Highway & State Highwayroadalsopassing in the area. Nearest railway station Jamui Railway Station is situated at about 3.0km in North Direction. Nearest town is Jamui (NP) located at about 3.7km in NW direction. District Headquarters Jamui (District Court) is situated at approx. 2.6 km towards SW direction. Nearest airport Deoghar is located at 72.0km in South direction. Jai Prakash Narayan Airport Patna is also located at about 137km in Northwest direction.

Communications (Jamui District)

Roads - The district of Jamui is well served by a network of roads. Road communication is the main mode of transportation in this district. The roads are classified as the National Highways, State Highways, Major district roads and other district roads. They are maintained by the Public Works Department, the Rural Engineering Organisation, the Zila Parishad and Municipalities. It is also connected with the interior of the district by metalled road. Two State Highways (SH-6 & SH-18) also passes through the district.

Railways - The district of Jamui has a railway communication system. It is served by East Central Railway. Jamui railway station is in Howarah-Patna-Mugalsarai main line.

Airways - Airways facilities are not available in the district.

Boats – Waterways facilities are not available in the district.

Banking Facility

The study area has almost all the schedule commercial banks with ATM facility at urban areas and the district HQ.

Trade and Commerce

The development of the means of communication has had a great impact on the trade and commerce of the district. The district may now be said to be fairly well- connected by Road and Rail. Jamui is

Page | III

predominantly an agricultural district. Its export-trade comprises mostly of Rice, Wheat and other cereals. But the main agricultural trade comprises of dairy and horticultural products like milk and vegetables. The important items imported in the district are coal, iron and steel products, salt, sugar, cement, cotton and woollen textile, kerosene oil, spices and tobacco.ade and Commerce

Mines and Minerals

In Jhajha, Khaira, Sono and Chakai the chief formation is Gneiss Basement complex. China Clay is found near Panari 24 km. south-west of Jhajha, the mines being known as BhukhliKaoten. Mines are worked by the Jhajha China Clay works.

Power Supply

It is revealed from the compiled information on amenities availability as per the census record of 2011; most of the villages and towns are electrified for Domestic, Agriculture, and Commercial& for allpurposes. About 86villages (66.7%) of the study area are electrified for domestic purpose, 80villages (62.0%) for agricultural purpose, and for commercial & for all purposes in the study area. Out of 129 villages/towns in the study area, 42villages (32.6%) including 10uninhabited villages (7.8%) are not electrified for any purpose in the study area.

The district receives its entire power supply from Bihar State Electricity Board. All the towns of Jamui district have electricity. In the rural areas, the Government is trying to extended electric line to the maximum number of villages by implementing various schemes for rural electrification.

Village/town wise Basic Infrastructure and Amenities availabilities data for the entire study area is compiled and presented in **Table 3.38** as follows;

Page | III

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Table 3.38 Village wise Basic Amenities Availability

Name of the Village/Town	Е	duc	ation	al			N	1edic	al				Dr	inkir	ıg Wa	ater		C T	Co	mmun Tran			Ap	proa Vill	ch to lage	the]	Power	Suppl	y	Nearest Town Distance, km
	P	M	S	S S S	C H C	P H C	P H S C	M C W C	Н	D	F W C	Т	W	H P	W	R	T k		PO	PT O	BS	RS	P R	K R	N W	F P	E D	E Ag.	E C	E A	
Daulatpur	1	1	1	0	0	1	1	1	0	1	1	2	2	1	2	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Maniadda	0	0	0	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,5km
Bhajour	1	1	0	0	0	1	1	1	0	1	1	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,5km
Garo Nawada	2	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,5km
Lathane	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,5km
Sugi	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	1	2	2	2	2	1	2	1	1	1	1	1	Jamui,10km
Thegua	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,10km
Sonpai	3	1	0	0	0	1	1	1	0	1	1	2	2	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Garsanda	3	1	0	0	0	1	1	1	0	1	1	2	2	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,5km
Barar	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	1	2	1	1	1	1	1	Jamui,3km
Khairi	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,6km
Rampur	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,6km
Khargpur	0	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	1	2	1	1	2	1	2	2	2	2	Jamui,6km
UgniChak	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,8km
SihoChak	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	1	2	2	1	2	1	2	2	2	2	Jamui,9km
Puteria	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,9km
Lukhri	1	0	0	0	0	0	0	0	0	0	0	2	1	1	2	1	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,6km
Sahur	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,6km
SitlaChak															Unin	habit	ed Vi	llage													Jamui, km
AgabaraBarwata	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Piri	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,6km
Abhaipur	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,9km
Markata	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Manjura	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	Jamui,6km
Indpe	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Dhenkdih	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Bukar	3	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,8km
Lotan	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,9km
Narainpur	1	1	0	0	0	0	1	0	0	0	0	2	2	1	2	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,9km
Bijuahi	1	0	0	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Kakan	3	1	0	0	0	1	1	1	0	1	1	2	2	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,15km

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Sonai	1	0	0	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Dhandh	1	0	0	0	0	0	1	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Lakhanpur	1	0	0	0	0	0	0	0	0	0	0	2	1	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Partapur	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,11km
Rajpura	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,6km
Marwa	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,9km
Dighoi	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,6km
SemariaBikrampur	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,7km
AmmaSarari	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Misir Manda	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,6km
Nim Nawada	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,7km
Bhat Chak	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,6km
Damdama	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,6km
Sira Nawada	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,15km
Neuri															Unin	habite	ed Vil	lage													Jamui, km
Lohra	8	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,10km
Udaipur															Unin	habite	ed Vil	lage												•	Jamui, km
Sultanpur	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,14km
Amrath	1	1	0	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,14km
RamalBigha															Unin	habite	ed Vil	lage												•	Jamui, km
MisirBigha	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,14km
Sangthu	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,10km
Deochand Nawada					•	•	•	•		•			•		Unin	habite	ed Vil	lage													Jamui, km
Bhagwana	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,13km
Kundri Son KurhaHarla	4	0	0	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,15km
Chhitma	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	2	1	2	2	2	2	Jamui,10km
Achari	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	1	2	1	1	2	1	2	2	2	2	Jamui,8km
Tetaria					•	•	•	•		•			•	•	Unin	habite	ed Vil	lage													Jamui, km
Arsar	1	1	1	0	0	1	1	1	0	1	1	2	2	1	2	2	2	2	1	2	1	2	1	1	2	1	1	1	1	1	Jamui,9km
Dundu	1	1	1	0	0	1	1	1	0	1	1	2	2	1	2	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,12km
Jamui (NP)															Tov	vn Aı	rea														Jamui (NP),0km
Barhat	8	3	0	0	0	0	1	0	0	0	0	2	2	1	1	2	2	2	1	2	1	1	1	1	2	1	1	1	1	1	Jamui,10km
Bahera	2	2	0	0	0	0	0	0	0	0	0	2	2	1	1	1	2	2	2	2	2	2	1	2	2	1	1	1	1	1	Jamui,20km
Bahera Kita Alaiya					•	•	•	•		•			•	•	Unin	habite	ed Vil	lage													Jamui,km
Bishunpur	3	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,18km
Lakra	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	1	2	1	1	2	1	1	1	1	1	Jamui,12km
Bangawan	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,12km
Numar	4	2	0	0	0	0	1	0	0	0	0	2	2	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,13km
Kolhua	8	3	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	1	2	2	2	1	1	1	1	1	1	1	1	Jamui,12km

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

M-1	l o		Lal	_	Lo	La	l 1	1	١٨	l 1 1	1	ا م	La	l 1	l 1 l	l 1	La	a 1	1		l a	l 1	l a l	1	ا ما	1	La	l 1	La	La	T: 01
Malepur	8	6	2	0	0	1	1	1	0	1	1	2	2	1	1	2	2	2	2	2	1	1	1	2	2	1	1	1	1	1	Jamui,8km
Bhaluka	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	1	1	1	2	2	1	1	1	1	1	Jamui,10km
Mohanpur	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,8km
Patauna	2	2	0	0	0	0	0	0	0	0	0	2	2	1	1	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,8km
Narsota	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	1	1	1	1	2	1	1	1	1	1	Jamui,8km
Achhra	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	1	1	1	1	2	1	1	1	1	1	Jamui,9km
Phulwaria	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	1	1	2	1	2	1	1	1	1	1	Jamui,9km
Nasrichak	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	1	1	1	1	2	1	2	2	2	2	Jamui,12km
Katauna	3	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	1	1	1	1	2	1	1	1	1	1	Jamui,9km
Sukhlewa	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	1	1	2	2	2	2	Jamui,13km
Guguldih (Part in Gidhaur)*	6	2	0	0	0	0	1	0	0	0	0	2	1	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,20km
Darha	8	4	1	0	0	0	1	0	0	0	0	2	2	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,15km
Lathlathwa	1	1	1	1	0	0	1	0	0	0	0	2	2	1	2	2	2	2	1	2	2	2	1	1	2	1	2	2	2	2	Jamui,14km
Labhet	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	Jamui,15km
Bhandara	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	2	2	1	1	1	1	1	Jamui,10km
Lakhai	2	2	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	2	1	2	1	1	1	1	1	Jamui,10km
Harla	1	1	0	0	0	0	1	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	Jamui,25km
Simaria	2	1	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,24km
Kolhua	1	0	0	0	0	0	1	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,26km
Kumardih	1	0	0	0	0	0	1	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,27km
Kharhua	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,29km
Mahuli	1	3	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,18km
Sewa	3	3	1	0	0	0	1	0	0	0	0	2	2	1	1	1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,25km
Ratanpur	2	5	1	0	0	0	1	0	0	0	0	2	2	1	1	1	2	2	1	1	1	2	1	1	2	1	1	1	1	1	Jamui,15km
Kundhur	3	1	0	0	0	0	1	0	0	0	0	2	2	1	1	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,17km
Nayagaon	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	1	2	2	1	2	1	1	1	1	2	1	1	1	1	1	Jamui,18km
Genadih	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,20km
Guguldih (Part in Barhat)*	4	4	0	0	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,22km
Chandabank															Unin	habit	ed Vi	lage													Jamui, km
Singarpur	1	0	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	2	1	1	1	1	1	1	Jamui,5km
Ballopur	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	Jamui,5km
Naudiha	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	1	1	1	1	2	2	1	1	1	1	1	Jamui,6km
Suraundha	1	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	Jamui,6km
Nauniatanr	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	Jamui,6km
Amari	1	1	0	0	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	2	1	1	2	2	2	Jamui,18km
Khutauna	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	2	2	1	2	2	2	2	Jamui,16km
Dharampur	1	1	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	1	2	1	1	2	2	2	2	Jamui,15km
Mahapur Khurd	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	Jamui,16km
Kharui	0	0	0	0	0	0	0	0	0	0	0	2	2	1	2	2	2	2	2	2	2	2	2	1	2	1	2	2	2	2	Jamui,18km

BASELINE DATA DESCRIPTION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Dumarkola	1	1	0	0	1	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	2	1	1	2	2	2	Jamui,20km
Khaira	3	2	2	2	,	0	1	1	1	0	1	1	2	2	1	1	2	2	2	1	1	1	2	1	2	2	1	1	1	1	1	Jamui,6km
Gopalpur	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	2	1	1	1	1	1	Jamui,7km
Karan Nawada	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	Jamui,5km
Kendih	2	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	2	2	2	2	1	2	2	1	1	1	1	1	Jamui,5km
BaribagJaljoga	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	Jamui,8km
Fatehpur	2	1	0	0)	0	0	0	0	0	0	0	2	1	1	1	1	2	2	2	2	2	2	1	1	2	1	1	2	2	2	Jamui,12km
Baheratari																Unin	habit	ed Vi	lage													Jamui, km
JorbahaDharampur	1	0	0	0)	0	0	0	0	0	0	0	2	1	1	2	1	2	2	2	2	2	2	1	1	2	1	1	2	2	2	Jamui,13km
Bhojpur	1	0	0	0)	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	1	2	1	1	2	1	2	2	2	2	Jamui,18km
Sagdaha	1	0	0	0)	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	2	1	2	1	1	1	1	1	Jamui,10km
Bhandra	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	2	1	2	2	2	2	2	2	2	1	2	1	1	1	1	1	Jamui,12km
Chancho	1	0	0	0)	0	0	0	0	0	0	0	2	2	1	2	2	2	2	1	2	2	2	2	2	1	1	1	1	1	1	Jamui,8km
Dabil	2	0	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	2	1	1	2	2	2	Jamui,15km
Durgodih																Unin	habit	ed Vi	lage													Jamui, km
Changodih	1	2	1	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	1	1	1	2	2	2	Jamui,7km
Nariana	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	1	1	1	1	1	1	Jamui,8km
Jogajhingoal	1	0	0	0)	0	0	0	0	0	0	0	2	2	1	1	1	2	2	2	2	2	2	1	1	2	1	1	1	1	1	Jamui,10km
Jitjhingoi	2	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	1	1	1	1	1	1	1	Jamui,12km
Banpur	1	1	0	0)	0	0	0	0	0	0	0	2	2	1	1	2	2	2	1	2	2	2	1	2	1	1	1	1	1	1	Jamui,8km
	1							•							•	•				•	•	•	•				•	•	•		•	
ı	7	8	1				1	2	1		1	1			Stat	us for	·Ava	ilabili	ty and	d Non	-Avail	ability	is sh	own a	sA (1) & 1	VA (2	?) resp	pectivel	y		
TOTAL (10km)	6	6	2	3	,	0	4	7	4	0	4	4																				

Source-http://www.censusindia.gov.in/2011census/dchb/DCHB.html

Abbreviations:

Educational Facilities: P-Primary School, M-Middle School, SS-Higher Secondary Schools, SSS-Senior Secondary School

Medical Facilities: CHC-Community Health Centre, PHC-Primary Health Centre, PHSC-Primary Health Sub-Centre, MCWC-Maternity and Child Welfare Centre, H-Hospital, D-Dispensary, FWC-Family Welfare Centre

Drinking Water Facilities: T-Tap Water, W-Well Water, HP-Hand Pump, TW-Tube Well Water, R-River Water, Tk-Tank Water, O-Other Drinking Water Facility, CT-Community Toilet

Communication & Transport Facilities: PO-Post Office, SPO-Sub-Post Office, PTO-Post & Telegraph Office, Tel. -Telephone Connection, Mob. -Mobile Phone Coverage, BS-Bus Services, RS-Railways Services

Approach to Village: PR-Paved Roads, KR-Kuchha Road, FP-Foot Path

Power Supply: ED-Power Supply for Domestic use, E Ag. -Power Supply for Agricultural use, EC-Power supply for Commercial use, EA-Electricity for All Purposes

Nearest Town & Distance, km: a for < 5 Km, b for 5-10 Km and c for 10+ km of nearest place where facility is available is given.

Brief Description of Places of Religious, Historical or Archaeological Importance and Tourist interest in Villages and Towns of the District:(District level information only)

Brief description of place of religious, historical or archaeological and tourist interest are as *Chhatriyakund, Lachhuar* - Well known Jain temple exists here. The place is about 26 km away from Jamui town and Known as birth place of Lord Mahavir.

Gidheshwar - It is an important historical place having a Mahadeo temple. It is 12 km away from Jamui town.

Simultalla- It is a railhead on the main line of Hawrah-Delhi. It is an important tourist place in the district. This place is also famous for its SimultallaAwasiyaVidyalaya which has been developed in pattern of Netarhat residential school (now in Jharkhand).

Famous Temples:

Jain Mandir Lachhuar - This is a large Dharmsalawith 65 rooms constructedfor the Jain pilgrims. There is a Mandir of Lord Mahavira inside the dharmsala. The idol in this temple is more than 2,600 years old.

Jhumrajsthan, Batiya - There is a temple of Baba jhumraj located in Batiya which is about 50 km from Jamui and 55 km from Deoghar.

Maa Netula Temple - This is a temple of Maa Netula Situated at village kumar, block sikandra. It is about 26 km west form the district headquarter jamui Bihar. Millions of devotees come here and pray.

Bhim Bandh - It is located between Lakshmipur and Haveli Kharagpur Jungle. Here the visitors find many source of hot water. This is a picnic spot in winter season from October to February.

Shiv Mandir - It is situated in Harla jury of Lakshmipur block. It is a temple of lord Shiva in Lakshmipur block. It is about 500m southward from Lakshmipur market.

Kali Mandir Lakshmipur -Temple of goddess Kali is situated in Harla jury of Lakshmipur block. A temple of goddess Kali in this block. It is about 600m southward from Lakshmipur main market.

Khaira Fort -This fort was built by Khaira-Jamui Chandel rulers. Another fort of Chandel rulers of Gidhor-Jamui was built at Gidhaur.Both Chandel dynasty was related to each other and split during period of Emperor Jahagir, Mughal Rulers of Delhi.

Social and Cultural Events

In the district of Jamui, no major social or cultural event has taken place during the decade. However, the district has been famous for fairs and melas held at different places throughout the year. Fairs and festivals are held regularly in the district. There is a brief lull during the two months of rainy season. There are some shopkeepers who keep on moving from fair to fair throughout the year. Some of the fairs held in the district are quite old.

Rehabilitation & Resettlement (R & R)

Policy to be adopted (Central/State) in respect of the project affected persons including home or land oustees and landless labour. Hence, any planning with respect to Rehabilitation & Resettlement is not applicable.

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

4.0 GENERAL

Identification of all potential environmental impacts due to project is an essential step of Environmental Impact Assessment. In case of mining projects, impacts on biodiversity, air pollution, water pollution, waste management and social issues are significant. Both direct and indirect environmental impacts will be created on various environmental attributes due to proposed mining activity in the surrounding environment, during the operational phase.

The occurrence of sand (minor mineral) deposits, being site specific, their exploitation often does not allow for any choice except adoption of eco-friendly operation. Positive impacts on socio-economic environment are expected due to creation of employment opportunities. Mining activities are normally carried out over a long period which also encourages development in the area such as roads, schools, hospitals etc.

Keeping in mind, the environmental baseline scenario as detailed in Chapter III and the proposed mining activity described in Chapter II, it is attempted to assess the likely impact and its extent on various environmental parameters and likely mitigation measures to be adopted.

The following parameters are of significance in the Environmental Impact Assessment and are being discussed in detail:

- 1. Land Environment
- 2. Water Environment
- 3. Air Environment
- 4. Noise Environment
- 5. Biological Environment
- 6. Socio-Economic Environment
- 7. Solid Waste
- 8. Traffic Environment

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

4.1 LAND ENVIRONMENT

The proposed extraction of stream bed materials, mining below the existing streambed, and alteration of channel-bed form and shape may lead to several impacts such as erosion of channel bed and banks, increase in channel slope, and change in channel morphology if, the operations are not carried out scientific &systematically.

The mining and allied activities involved due to mining result in creation of temporary haul roads and formation of mined pits, etc. affecting the landuse pattern. In this project, silt and clay are also produced as a constituent along with minerals, which are considered to be waste.

Anticipated Impacts:

- Mining activity will impact river bed topography by formation of excavation voids.
- River bed mining may bring in some change in topography at the nearby area of the mine lease.
- Stacks of solid waste generated from mining activity may hinder the flow of water in monsoon season.

Mitigation measures:

Adopting suitable, site-specific mitigation measures can reduce the degree of impact of mining on land. Some of the land-related mitigation measures are as follows:

- Excavated pits will get replenished annually in monsoon itself & will be restored to original.
- The mine working will remain confined to allotted river bed only, so it will not disturb any surface area outside the mine lease area which may affect topography or drainage.
- Solid waste will not be stacked on the bank side as it will hinder the flow of water in monsoon season.

PAIS

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

4.2 WATER ENVIRONMENT

Anticipated Impacts:

Mining of sand from within or near *river* has an indirect impact on the physico-chemical habitat characteristics during monsoon season. These characteristics include in stream roughness elements, depth, velocity, turbidity, sediment transport and stream discharge.

The detrimental effects, if any, to biota resulting from bed material mining are caused by following:

- ➤ Alteration of flow patterns resulting from modification of the *river*
- ➤ An excess of suspended sediment during monsoon season.

Mitigation measures

Project activity will be carried out only in the dry part of the Kiul River. Hence, none of the project activities affect the water environment directly. In the project, it is not proposed to divert or truncate any stream in monsoon season only. No proposal is envisaged for pumping of water either from the *River* (in monsoon) or tapping the ground water.

In the lean months, the proposed mining will not expose the base flow of the *River* and hence, there will not be any adverse impact on surface hydrology.

The deposit will be worked from the top surface up to a maximum depth of 1m below ground level or above the ground water table whichever comes first. Hence mining will not affect the ground water regime as well.

Further mining will be completely stopped during the monsoon seasons to allow the excavated area to regain its natural profile.

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

4.3 AIR ENVIRONMENT

Impact On Air Quality

The proposed project includes various activities like development of benches, approach roads, haul roads, excavation and transportation of mineral and waste materials. These operations generally result in generation of dust and thereby pose health hazards. However, it is proposed that adequate control measures will be provided at every stage of operation such as, water sprinkling at loading, unloading points and on haul roads before transportation to reduce the fugitive dust emissions.

The mining is proposed to be carried out by opencast manual method. The air borne particulate matter (PM10) generated by ore and waste handling operations, transportation and screening of ore is the main respirable air pollutant. The emissions of Sulphur dioxide (SO2), Nitrogen Oxides (NO2) contributed by vehicles plying on haul roads will be marginal. Prediction of impacts on air environment has been carried out taking into consideration proposed production and net increase in emissions.

4.3.1 Emissions Details

Loading - unloading and transportation of sand material, wind erosion of the exposed area and movement of light vehicles will be the main polluting source in the proposed mining activities releasing Particulate Matter (PM10) affecting Ambient Air of the area. Emission during, Loading and unloading was calculated by the area sources. Details of emission during loading/unloading and transportation on the haul road, wind erosion of the exposed area and road maintenance were discussed and combined impact was predicted in the worst case scenario under worst meteorological condition given as follows:

Loading and Unloading - US EPA, 2008, revision of emission factor for AP-42 was used to calculate emission of particulate matter released into the atmosphere during loading and unloading separately. Emission during loading was found more than during unloading. Emission of PM10 during loading was calculated and found to be 1.92 x 10-3 g/s/m² based on moisture content 10-20% mine. It is assumed that moisture content was 10% and further moisture content will be increased to 10-20% to reduce emission of PM10 during unloading and average wind

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

speed was 0.92 m/s as observed with site data as shown in wind rose and discussion of local meteorology of the area.

Haul Road - US EPA, 2006, revision of emission factor for AP-42 was used to calculate emission of particulate matter released into the atmosphere during transportation of ore and over burden by trucks operated per hour on haul road. Emission of PM10 due to transportation of sand on haul road was 1.65 x 10-4 g/s/m2 based on assumption that silt content spread on road surface was 5%, and efficiency of PM10 emission control 90%. Truck will be fully covered with tarpaulin material and emission of PM10 during on the haul road will be insignificant.

Based on the above consideration that there was low emission of PM10 during transportation of ore and overburden, however during loading & unloading, transportation of ore over the haul road, emission of PM10 of the exposed area due to wind erosion and movement of light vehicles on the road were not considered and combined with mining activities. US EPA based Dispersion ISCST-3 model was used for prediction of impact with 24-h meteorological data of the study period for the assessment of GLC.

4.3.2 Meteorological Data

The meteorological data recorded at hourly interval during the month of Dec to feb 2023 on wind speed 0.92 m/s, wind direction, dry & wet bulb temperature, humidity, cloud cover and rainfall was processed to extract hourly mean meteorological data as per the guidelines of CPCB/MoEF for prediction of impacts from the area source. Stability was computed by Turner's method and mixing height was obtained from publication of IMD "Atlas of Hourly Mixing Height in India, 2008.

Data recorded from authorized source/Govt. agency were used as meteorological input for Dispersion Model which was stored in the computer for further analysis and interpretation to study the local meteorology of the study area. It was observed that westerly & north westerly was pre-dominant wind during summer as shown in wind rose (Figure 4.1) with low wind speed and 13.6 % calm condition was observed during study period at the site which was very much close and cumbersome with long term meteorological data of IMD. Average wind speed was

0.92m/s. Impact of the pollutants was anticipated in southeast sector under influence of northeasterly & westerly winds. Ambient air quality locations were selected based on the long term wind rose pattern of the area. Air quality sampling locations were finalized to study the baseline status around the proposed site and to study impact at various locations. 24-h maximum impact of PM10 was envisaged in southeast sector at very short distance from the site due to moderate to low wind speed.

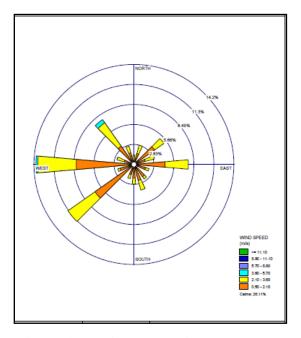


Figure 4.1: Wind Rose Diagram

Stable atmospheric condition E & F dominates in early morning and night hours and B, C & D in day hours were observed. Pollutants were dispersed from the proposed source under influence of local meteorology and dispersed on the ground in downwind direction close (~100 m) to the source under influence of moderate to low wind speed. High temperature and low humidity were observed at site with high temperature in day hours and low during night. There was no significant rain fall received and sky was clear of clouds in most of the days.

4.3.3 Frame work of Computation & Model details

By using the above-mentioned inputs, ground level concentrations due to the mining activities have been estimated to know the incremental rise in ambient air quality and impact in the study

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

area. The effect of air pollutants upon receptors are influenced by concentration of pollutants and their dispersion in the atmosphere. Air quality modeling is an important tool for prediction, planning and evaluation of air pollution control activities besides identifying the requirements for emission control to meet the regulatory standards and to apply mitigation measures to reduce impact caused by mining activities.

PM10 was the major pollutant occurred during mining activities. Impact of area source emission was considered and prediction of impact was made on various monitoring locations in the study area due to i) loading and unloading and iii) transportation of vehicles on the haul road in the mining area. Impact was predicted in the worst case scenario due to combined impact of loading and unloading and emission due to transportation of vehicles on mine on haul road of mining area and other mining activities will occur simultaneously.

Impact was predicted over the distance of 10,000 m and 2,000 m around the source in grids of 200m & 20 m respectively in Cartesian coordinates(X,Y) to assess the impact at each receptor separately at the various locations and maximum incremental GLC value at the project site. Maximum impact of PM10 was observed close to the source—due to low to moderate wind speeds. Incremental value of PM10 was superimposed on the base line data monitored—at the proposed site to predict total GLC of PM10 due to combined impacts.

Mitigation measures

The collection and lifting of minerals will be done by loaders. Therefore, the dust generated is likely to be insignificant as there will be no drilling & blasting. The only air pollution sources are the road transport network of the trucks. The mitigation measures like the following will be resorted:

- ✓ Water sprinkling will be done on the haul roads twice in a day.
- ✓ Deploying PUC certified vehicles to reduce their emissions
- ✓ Proper tuning of vehicles to keep the gas emissions under check
- ✓ Monitoring to ensure compliance with emission limits would be carried out during operation

PAIS

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- ✓ There is no major source of emissions except emission from combustion of fuels from the Transportation Vehicles and Material Handling.
- ✓ Besides this, to control the emissions further regular preventive maintenance of Equipment / Transportation Vehicles will be carried out on contractual basis.
- ✓ It will be ensured that all transportation vehicles carry a valid PUC certificate.
- ✓ Plantation will be carried out along the approach road, river banks & at all strategic places in the vicinity area.
- ✓ Periodic air quality monitoring will be done to assess the quality and for timely corrective actions.
- ✓ Water sprinkling will be done on the haul roads twice in a day. This will reduce dust emission further.
- ✓ Speed limits will be enforced to reduce airborne fugitive dust from vehicular traffic.
- ✓ Spillage from the trucks will be prevented by covering tarpaulin over the trucks.

4.4 NOISE ENVIRONMENT

The proposed mining activity is semi-mechanized in nature. No drilling & blasting is envisaged for the mining activity. Hence, the only impact is anticipated is due to movement of vehicles deployed for transportation of minerals.

Anticipated Impacts:

- Mental disturbance, stress& impaired hearing.
- Decrease in speech reception& communication.
- Distraction and diminished concentration affecting job performance efficiency.

The noise level in the working environment are compared with the standards prescribed by Occupational Safety and Health Administration (OSHA-USA) which has been adopted and enforced by the Govt. of India through model rules framed under Factories Act, 1980 and CPCB 2000 norms. The summary of the permissible exposures in cases of continuous noise as per above rules is given below:

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Table 4.1, Damage risk criteria for hearing loss OSHA regulations

Maximumallowable duration	Sound pressure dB(A)	Remarks
per day in hour		
(1)	(2)	(3)
8.0	90	1. For any period of
6.0	92	exposure falling in
4.0	95	between any figure and
3.0	97	lower figure as
2.0	100	indicated in column
1 ½	102	(1), the permissible
1	105	sound is to be
3/4	107	determined by
1/2	110	extrapolation or
1/4	115	proportionate scale. 2. No exposure in excess of 115 dB (A) is permissible.

Noise at lower levels (sound pressure) is quite acceptable and does not have any bad effect on human beings, but when it is abnormally high- it incurs some maleficent effects.

a. Mitigation measures

The following measures have been envisaged to reduce the impact from the transportation of minerals:

- The vehicles will be maintained in good running condition so that noise will be reduced to minimum possible level.
- In addition, truck drivers will be instructed to make minimum use of horns in the village area and sensitive zones.
- No such machinery is used for mining which will create noise to have ill effects.
- Awareness will be imparted to the workers about the permissible noise levels & maximum exposure to those levels.

4.5 BIOLOGICAL ENVIRONMENT

Mining which leads to the removal of channel substrate, re-suspension of streambed sediment and stockpiling on the streambed, will have ecological impacts. These impacts may have an

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

effect on the direct loss of stream reserve habitat, disturbances of species attached to streambed deposits, reduced light penetration, reduced primary production, and reduced feeding opportunities. Sand mining generates additional traffic, which negatively impairs the environment.

Anticipated Impacts:

Flora

The proposed project of river bed sand mining shall be carried out on the riverbed of Kiul River. There are no trees in the project area. The project shall also not lead to any change in land use and will be replenished every year after successive rains. The proposed mining activity, which although is an economically gainful activity, also constitutes river training work. It allows for necessary dredging activity which may otherwise lead to flooding of the valley.

There shall be negligible air emissions or effluents from the project site during loading of the truck. This shall be a temporary effect and not anticipated to affect the surrounding vegetation significantly.

Fauna

Animals are sensitive to noise and avoid human territory. The project stretch of the river is not an identified drinking water point for the animals. However, any animal desirous of accessing the river can continue to do so upstream or downstream of the stretch during the mining activities, as there will not be any damming or diverting of water. Hence, no significant impact is anticipated from the proposed project.

Mitigation measures

As the proposed mining will be carried out in a scientific manner, not much significant impact is anticipated, however, the following mitigation measures will be taken to further minimize it:

Flora

Although, the project will not lead to any tree cutting, plantation activities shall be undertaken to improve the vegetation cover of the area. To avoid dust emissions, the mined materials will be covered with tarpaulin during transportation.

Fauna

The workers shall be directed to not venture out of the leased area for collecting fuel wood, or hunting. They shall also be trained not to harm any wildlife. No work shall be carried out after sunset.

4.6 TRAFFIC ANALYSIS

Transportation Route:

The sand extracted will store the nearby storage point. From there sand will be transported to the market. Sand will be stored in to storage point and from there it will be transported in the night time when traffic load is low on nearest SH or NH.

FIGURE 4.1 MAP SHOWING EVACUATION ROUTE FOR JAMUI KIUL BLOCK 15

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Traffic analysis is carried out by understanding the existing carrying capacity of the roads near to the project site and the connecting main roads in the area. Then depending on the capacity of the mine, the number of trucks that will be added to the present scenario will be compared to the carrying capacity.

Table 4.2 (i): Existing Traffic Scenario & LOS for Block 15

Road	V	C	Existing V/C Ratio	LOS
National Highway (NH 333A)	2400	15000	0.16	A

Source: Capacity as per IRC: 64-1990

V= Volume of Vehicles in PCU's/day & C= Capacity of Road in PCU's/day
The existing Level of Service (LOS) is "A" & "B" i.e. excellent & very good.

V/C	LOS	Performance
0.0 - 0.2	A	Excellent
0.2 - 0.4	В	Very Good
0.4 - 0.6	С	Good / Average / Fair
0.6 - 0.8	D	Poor
0.8 - 1.0	Е	Very Poor

Reference: ENVIS Technical Report, IISc, Bangalore.

During Mine operation for Sand Block 15

Proposed Capacity of Mine/annum : 217536 TPA

No. of working days : 250 days

Proposed Capacity of mine/day : 871

Truck Capacity : 16 tonnes

No. of trucks deployed/day : 55
Increase in PCU/day (55*3) : 165

Table 4.2 (ii): Modified Traffic Scenario & LOS

Road	V	C	Modified V/C Ratio	LOS
National Highway (NH 333A)	2400+165=2565	15000	0.17	A

Results

From the above analysis it can be seen that the LOS has changed from 0.16 to 0.17 at Highway intersection that is from 'A' to 'A' i.e from Excellent' to 'Very Good' respectively. Hence, there will not so much adverse affect on the proposed evacuation roads due to additional traffic. Traffic management has been proposed as given in below

Traffic Management:

- 1. Roads will be repaired regularly and maintained in good conditions.
- 2. Haul roads will be sprinkled with water to keep the dust suppressed.
- 3. A supervisor will be appointed to regulate the traffic movement near the site.
- 4. Speed breakers will be constructed near accident prone areas to calm the traffic and its speed.

TRAFFIC MANAGEMENT FOR PROJECTS IN CLUSTER

Production Details of Cluster of project(As per DSR):

S no	Block No	Production Details
1	Jamui Kiul Block 13	388104 TPA
2	Jamui Kiul Block 14	376980 TPA
3	Jamui Kiul Block 15	379452 TPA
Total	Production in cluster	11,44,536 TPA

Table 4.2 (i): Existing Traffic Scenario & LOS for

Proposed Cluster of Block 13, Block-14 & Block-15

Road	V	C	Existing V/C Ratio	LOS
National Highway (NH 333A)	2400	15000	0.16	A

Source: Capacity as per IRC: 64-1990

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

V= Volume of Vehicles in PCU's/day & C= Capacity of Road in PCU's/day

The existing Level of Service (LOS) is "A" & "B" i.e. excellent & very good.

V/C	LOS	Performance
0.0 - 0.2	A	Excellent
0.2 - 0.4	В	Very Good
0.4 - 0.6	С	Good / Average / Fair
0.6 - 0.8	D	Poor
0.8 - 1.0	Е	Very Poor

Reference: ENVIS Technical Report, IISc, Bangalore.

During Mine operation for Proposed Cluster of Jamui Kiul Block 13, Block 14, & Block 15

Proposed Capacity of Mine/annum : 11,44,536 TPA

No. of working days : 250 days

Proposed Capacity of mine/day : 4578.14 or say 4579 TPD

Truck Capacity : 16 tonnes

No. of trucks deployed/day : 286.18 or 287

Increase in PCU/day (287*3) : 861

Table 4.2 (ii): Modified Traffic Scenario & LOS

Road	V	С	Modified V/C Ratio	LOS
National Highway (NH 333A)	2400+861=3261	15000	0.217	В

Results

From the above analysis it can be seen that the LOS has changed from 0.16 to 0.217 at Highway intersection that is from 'A' to 'B' i.e from Excellent' to 'Very Good' respectively, as per classification. Hence, there will not so much adverse affect on the proposed evacuation roads due to additional traffic. Traffic management has been proposed as given below.

Traffic Management:

- 5. Roads will be repaired regularly and maintained in good conditions.
- 6. Haul roads will be sprinkled with water to keep the dust suppressed.
- 7. A supervisor will be appointed to regulate the traffic movement near the site.

Anticipated Environmental Impact And Mitigation Measures

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

8. Speed breakers will be constructed near accident prone areas to calm the traffic and its speed.

5.0 ANALYSIS OF ALTERNATIVE TECHNOLOGY AND SITE

5.1 Site Alternatives under Consideration

Presence of sand for commercial exploitation has been identified based on the result of geological investigations and exploration. The mining projects are site specific as such alternate sites were not considered.

5.2 Analysis of Alternative Technology

5.2.1 Choice of Method of Mining

Factors in the choice of an actual mining method for a given deposit are deposit characteristics, requirement of health and safety and environmental concerns, production, scheduling scope of mechanization, workforce requirements wage rates, replenishment, operating and capital cost estimates. The selection of the mining method (development and extraction) is a key decision to be made in the opening up of a mine.

Surface or open cast mining is used for large, near-surface mineral deposits. Mineral is exploited, loaded into trucks, and hauled to a market.

The opencast mining method will be adopted because of the following reasons:

- The opencast mining operations ensure higher mineral conservation.
- Replenishment

The method used for mining is efficient for sand mining, so no alternative mining method is proposed.

6.0 INTRODUCTION

Regular monitoring of the various environmental parameters is necessary to evaluate the effectiveness of the management programme so that the necessary corrective measures can be taken in case there are some drawbacks in the proposed programme. Since environmental quality parameters at work zone and surrounding areas are important for maintaining sound operating practices of the project in conformity with environmental regulations, the post project monitoring work forms part of Environmental Monitoring Program.

Environmental Monitoring Program will be implemented once the project activity commences. Environmental monitoring program includes (i) Environmental surveillance, (ii) analysis & interpretation of data, (iii) Preparation of reports to support environmental management system and (iv) Organizational set up responsible for the implementation of the programme.

6.1 ENVIRONMENTAL MONITORING AND REPORTING PROCEDURE

Monitoring shall confirm that commitments are being met. This may take the form of direct measurement and recording of quantitative information, such as amounts and concentrations of discharges and wastes, for measurement against corporate or statutory standards, consent limits or targets. It may also require measurement of ambient environmental quality in the vicinity of a site using ecological/biological, physical and chemical indicators. Monitoring may include socio-economic interaction, through local liaison activities or even assessment of complaints.

The preventive approach to environment management may also require monitoring of process inputs, for example, type and method used, resource consumption, equipment and pollution control performance etc.

The key aims of environment monitoring are:

1. To ensure that results/ conditions are as forecast during the planning stage, and where they are not, to pinpoint the cause and implement action to remedy the situation.

ENVIRONMENTAL MONITORING PROGRAMME

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- 2. To verify the evaluations made during the planning process, in particular with risk and impact assessments and standard & target setting and to measure operational and process efficiency.
- 3. Monitoring will also be required to meet compliance with statutory and corporate requirements.
- 4. Finally, monitoring results provide the basis for auditing i.e. to identify unexpected changes.

6.2 MONITORING METHODOLOGIES AND PARAMETERS

Air quality monitoring

Air Quality monitoring is essential for evaluation of the effectiveness of abatement programmes and to develop appropriate control measures. Suspended Particulate Matter (SPM), Sulphur Dioxide (SO₂) and Nitrogen Dioxide (NO₂) will be monitored at the workplace i.e. core zone. The methodology proposed for is shown below:

Table 6.1, Monitoring methodologies and parameters

Parameters	Technique	Technical Protocol
PM ₁₀	Gravimetric method	IS 5182 (Part-XXIII)
Sulphur Dioxide	Improved West and Gaeke	IS-5182 (Part-II)
Nitrogen Dioxide	Modified Jacob & Hochheiser	IS-5182 (Part-VI)

Water quality monitoring

Water quality monitoring involves periodical assessment of quality of surface water and the ground water near the mining project.

- Surface water samples will be analyzed for all the parameters as per EPA, 1986
- Ground water samples will be analyzed for all the parameters as per IS-10500:2012.

ENVIRONMENTAL MONITORING PROGRAMME

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Soil quality monitoring

The soil quality monitoring is carried out to assess the soil characteristic. The soil quality will be analyzed as per CPCB norms.

Noise level monitoring

Noise level monitoring will be done for achieving the following objectives:

- a) To compare sound levels with the values specified in noise regulations
- b) To determine the need and extent of noise control of various noise generating sources

Noise level monitoring will be done at the work zone to assess the occupational noise exposure levels. Noise levels will also be monitored at the noise generating sources like mineral handling arrangements, vehicle movements and also at the nearest village for studying the impact due to higher noise levels for taking necessary control measures at the source.

Socio-economic Survey

Socio economic condition will be monitored to assess the demographic particulars of the area including the impacts on the social & economical condition on the residents nearby.

Plantation Monitoring Programme

Plantation monitoring will be done to ensure survival & growth rate of plantations.

6.3 MONITORING SCHEDULE

The schedule has been shown below for the parameters proposed for monitoring.

Table 6.2, Details of monitoring schedule

S.No.	Description of Parameters	Schedule of Monitoring		
1	Air Quality	24 hourly samples twice/Thrice a week in each season except monsoon		
2	Water Quality (Surface & Groundwater)	Once a season for 4 seasons in a year		
3	Soil Quality	Once in a year in project area		

ENVIRONMENTAL MONITORING PROGRAMME

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

4	Noise Level	Twice a year for first two years & then once a		
		year		
5	Socio-economic Condition	Once in 3 years		
6	Plantation Monitoring	Once in a season		

6.4 MONITORING SCHEDULE - IMPLEMENTATION

An implementation programme has been prepared as it serves no purpose if it is not implemented in letter and spirit.

Implementation of proposed control measures and monitoring programme has an implication on mining site as well as on the surrounding area. Therefore, mine management should strengthen the existing control measures as elaborated earlier in this report and monitor the efficacy of the control measures implemented in the entire study area:

- a) Collection of air and water samples at strategic locations with frequency suggested and by analyzing thereof. If the parameters exceed the permissible tolerance limits, corrective regulation measure will be taken.
- b) Collection of soil samples at strategic locations once every two years and analysis thereof with regard to deleterious constituents, if any.
- c) Measurement of water level fluctuations in the nearby ponds dug wells and bore wells and to assess if mining has got any impact on it or not.
- d) Measurement of noise levels at mine site and adjacent villages will be done twice a year for first two years and thereafter once a year.
- e) Post plantation, the area will be regularly monitored in every season for evaluation of success rate. For selection of plant species local people should also be involved.

An Environmental Management Cell (EMC) is envisaged which will be responsible for monitoring EMP and its implementation. EMC members should meet periodically to assess the progress and analyze the data collected during the month.

6.5 BUDGET ALLOCATION FOR MONITORING

The EMC will be responsible to carry on the monitoring. Budget allotment has also been proposed for the same:

ENVIRONMENTAL MONITORING PROGRAMME

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Table 6.3, Budget for monitoring

S. No.	Description	Cost to be incurred (in lakhs/annum)
1	Water Quality (Surface & Groundwater)	1.0
2	Soil Quality	0.50
3	Air Quality	1.0
4	Noise Level	0.5
5	Plantation Monitoring	0.5
6	Socio-economic Condition	0.5
1	TOTAL	4.0

6.6 REPORTING SCHEDULES OF THE MONITORING DATA

It is proposed that voluntary reporting of environmental performance with reference to the EMP should be undertaken. The environmental monitoring cell shall co-ordinate all monitoring programmes at site to furnish the data to the State regulatory agencies regularly in respect of the stipulated prior environmental clearance terms and conditions. The proponent shall prominently advertise in the newspapers indicating that the project has been accorded environmental clearance and also the details of website where it is displayed.

7.0 PUBLIC CONSULTATION

This is Draft EIA report public hearing is yet to be conducted.

7.1 HAZARD IDENTIFICATION AND RISK ASSESSMENT METHODOLOGY

Risk is to expose someone or something to danger, harm or loss. The different steps of risk assessment procedure are as given below:

Step I: Hazard Identification

The purpose of hazard identification is to identify and develop a list of hazards for each job in the organization that are reasonably likely to expose people to injury, illness or disease if not effectively controlled. Workers can then be informed of these hazards and controls put in place to protect workers prior to them being exposed to the actual hazard.

Step II: Risk Assessment

Risk assessment is the process used to determine the likelihood that people exposed to injury, illness or disease in the workplace arising from any situation identified during the hazard identification process prior to consideration or implementation of control measures.

Risk occurs when a person is exposed to a hazard. Risk is the likelihood that exposure to a hazard will lead to injury or health issues. It is a measure of probability and potential severity of harm or loss.

Step III: Risk Control

Risk control is the process used to identify, develop, implement and continually review all practicable measures for eliminating or reducing the likelihood of an injury, illness or diseases in the workplace.

Step IV: Implementation of risk controls

All hazards that have been assessed should be dealt in order of priority in one or more of the following hierarchy of controls

The most effective methods of control are:

- ✓ Elimination of hazards.
- ✓ Substitute something safer.
- ✓ Use engineering/design controls.

- ✓ Use administrative controls such as safe work procedures.
- ✓ Protect the workers i.e. by ensuring competence through supervision and training, etc.

Each measure must have a designated person assigned for the implementation of controls. This ensures that all required safety measures will be completed.

Step V: Monitor and Review

Hazard identification, risk assessment and control are an on-going process. Therefore regularly review the effectiveness of your hazard assessment and control measures. Make sure that you undertake a hazard and risk assessment when there is change to the workplace including when work systems, tools, machinery or equipment changes. Provide additional supervision when the new employees with reduced skill levels or knowledge are introduced to the workplace.

A) RISK ANALYSIS

The risk assessment portion of the process involves three levels of site evaluation:

- a) Initial Site Evaluation,
- b) Detailed Site Evaluation,
- c) Priority Site Investigations and Recommendations.

The risk assessment criteria used for all levels of site evaluation take into account two basic factors:

- The existing site conditions
- The level of the travelling public's exposure to those conditions.

The Initial Site Evaluation and Detailed Site Evaluation both apply weighted criteria to the existing information and information obtained from one site visit. The Initial Site Evaluation subdivides the initial inventory listing of sites into 5 risk assessment site groups. The Detailed Site Evaluation risk assessment is then performed on each of the three highest risk site groups in order of the group priority level of risk. The result of the Detailed Site Evaluation process is a prioritized listing of the sites within each of the three highest risk site groups.

Risk analysis is done for:

Forecasting any unwanted situation

- Estimating damage potential of such situation
- Decision making to control such situation
- Evaluating effectiveness of control measures

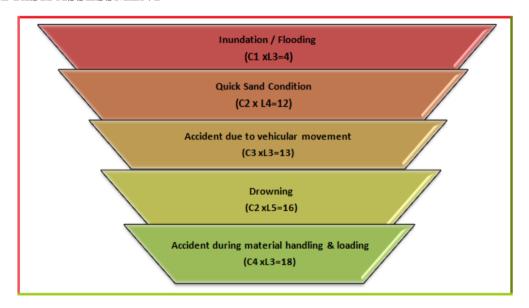
Table 7.1, Risk Likelihood Table for Guidance

Step 1: Assess the Likelihood			Step 2: Assess the Consequences			
L1	Happens every	Almost	Common or	C1	Fatality	Catastrophic
	time we	Certain	repeating			
	operate		occurrence			
L2	Happens	Likely	Known to have	C2	Permanent	Major
	regularly		occurred "has		disability	
	(often)		happened"			
L3	Has happened	Possible	Could occur or	C3	Medical/hospita	Moderate
	(occasionally)		"heard of it		l or lost time	
			happening"			
L4	Happens	Unlikely	Not likely to	C4	First aid or no	Minor
	irregularly		occur		lost time	
	(almost never)					
L5	Improbable	Rare	Practically	C5	No injury	Insignificant
	(never)		impossible			

A logical systematic process is usually followed during a qualitative risk assessment to identify the key risk events and to assess the consequences of the events occurring and the likelihood of their occurrence Table 7.2

Table 7.2, Qualitative Risk Assessment

Risk Rank	L1	L2	L3	L4	L5
Likelihood Consequence	Almost certain	Likely	Possible	Unlikely	Rare
C1					
Catastrophic	1	2	4	7	11
C2					
Major	3	5	8	12	16
С3	6	9	13	17	20



Moderate					
C4					
Minor	10	14	18	21	23
C5					
Insignificant	15	19	22	24	25

RISK RATING:

HIGH RISK 1-6	LOW RISK 16-25	
		ı

7.2 RISK ASSESSMENT

There are various factors, which can create unsafe working conditions/hazards in mining of minor minerals from bed of river.

The key risk(hazard x probability) event rating associated with sand mining and to assess its consequences of such events occurring and the likelihood based on above Table 7.1 (ii) are as:-

The Risk rating of such hazards is as follows:

7.2.1 INUNDATION/FLOODING

The risk rating assigned to this activity is assigned as '4' i.e., it is possible and will have catastrophic with major consequences, if work started without assessment of the *river* condition especially during monsoon season.

Inundation or flooding is expected and beneficial for these mines as during this time only the mineral reserve gets replenished.

Measures to prevent consequences of inundation/flooding

Inundation of flooding is expected and beneficial for these mines as during this time only the mineral reserve gets replenished.

- 1. During monsoon months and heavy rains the mining operations are ceased.
- 2. There should be mechanism/warning system of heavy rains and discharges from the upstream dams.

7.2.2 Quick Sand Condition

The risk rating assigned to this activity is assigned as '12' i.e., it is an unlikely event with major consequences as frequency of this risk is less likely to occur.

Two things may create the conditions to form quicksand. Underground water may seep-up and saturate the sand, thereby reducing the friction between the sand grains and giving the sand a liquid nature. Or, sand or another soil may be sifted by the force of an earthquake so that friction is lessened and the earth becomes unsteady.

This creates danger condition to the trucks plying near the *river* and banks for transportation of minerals.

Measures to Prevent Quick Sand Condition

- 1. The only way to avoid quick sand condition is by avoiding mineral lifting below water table.
- 2. Mining will be done in layers rather than going for maximum depth at one time.

7.2.3 ACCIDENT DUE TO VEHICULAR MOVEMENT

The risk rating assigned to this activity is assigned as '13' i.e., it is possible event with moderate consequences as frequency of this operation is more but the predicted/assumed intensity is less like minor cuts, bodily injury. The possibilities of road accidents are due to reckless or untrained driver or overloading of trucks or in case pathway is not compacted suitably, etc.

Measures to Prevent Accidents during Transportation

- 1. All transportation within the main working should be carried out directly under the supervision and control of the management.
- The Vehicles will be maintained/repaired and checked thoroughly by the competent person.
- 3. A statutory provision of constant education, training etc. will go a long way in reducing the incidents of such accidents.
- 4. Overloading will not be permitted and will be covered with tarpaulin.
- 5. The maximum permissible speed limit will be ensured.
- 6. The truck drivers will have valid driving license.

7.2.4 DROWNING

The risk rating assigned to this activity is assigned as '16' i.e., it is a rare accident but will have major consequences, if occurred. This may occur due to flash floods etc due to which the workers at the site may get seriously injured or drowned.

Measure to Prevent Drowning

- 1. The mining will be done under strict supervision and only in the dry part of the *river*.
- 2. Mining will be completely stopped in monsoon season to avoid such accidents.
- 3. Deep water areas will be identified and 'No Go Zones' will be clearly marked and made aware to the mine workers.

7.2.5 ACCIDENT DURING MATERIAL HANDLING & LOADING

The risk rating assigned to this activity is assigned as '18' i.e. it is possible event with minor consequences", as frequency of this operation is more but the predicted/assumed intensity is less like minor cuts, abrasion, etc. may be due to bank of *river* collapse, over thrown boulders/pebbles, injuries due to carelessness use of hand tools, etc.

Measures to Prevent Accidents during material handling & loading

- 1. The truck should be brought to a lower level so that the loading operation suits to the ergonomic condition of the workers.
- 2. The loading should be done from one side of the truck only to avoid over throw of materials.
- 3. The workers should be provided with gloves and safety shoes during loading.

All the activities will be done under strict supervision/control to avoid anticipated accidents so that the risk is reduced to a level considered **As Low As Reasonably Practicable (ALARP)** conditions which are adequately safe and healthy.

7.3 DISASTERS & ITS MANAGEMENT

7.3.1 Anticipated Disaster

- **1. Floods**: Most of the areas of this district are flood prone owing to the presence of seasonal rivers. Rivers and its tributaries cause heavy losses to the human lives, livestock, land and property mainly due to flash floods. Hence no mining has been proposed during monsoon and flood alerts will be given, if any.
- **2. Earth Quake**: Jamui District like other areas of Bihar is moderately vulnerable to earthquake as it exists in Zone IV. However the vulnerability to damage near the site is quite low as there are no built in structures at the site.
- 3. Drought: due to deficiency in rainfall prime reasons of recurring drought in Bihar is the nature of soil with low mineral and humus-contents besides extremely poor water holding capacity. Recurrent rainfall variability and sustained departure from the normal rainfall vis-a-vis low reliability, fluctuating both surface and underground water resources and extremely poor water holding capacity of the major soil group appear to have clubbed together to cause frequent droughts in Bihar. Besides, there is a positive relationship between reducing forest land and the increasing rainfall variability and the phenomenon is well manifested in Bihar scenario of recurrent droughts.

7.3.2 Disaster Management Plan & Strategy

The Disaster Management Plan has three components:

(A) Risk Analysis and Vulnerability Assessment:

The Risk Analysis and Vulnerability Assessment depict the present picture for each disaster-exposure, loss of life, property damage, etc. It also shows geographic distribution of each hazard. The various monitoring facilities, regulatory regimes, countermeasures available for each disaster are identified and listed.

(B) Response Plan:

The response plan presents an organizational structure of the District to effectively handle the disaster in a coordinated and quickest possible manner to mitigate the impact of

disaster. It identifies functional areas such as relief, restoration, communication, information, transport, emergency health services etc and proposes assignments to various departments; including identifying lead and supporting departments. The response plan also lays down preparedness checklists and standing operating procedure (SOP) guidelines.

(C) Mitigation Strategy:

The mitigation strategy and plan focus on the long-term planning for impact reduction. It deals with the issues of continued commitment to hazard identification and risk assessment, applied research and technology transfer, investment- incentives for mitigation, and leadership and co-ordination for mitigation.

The mine management will be in regular contact with the District administration to gather information on natural disasters and will pass on the message at the site to avoid any loss of health or wealth due to impending disasters.

Though the responsibility of disaster management is vested with the center and state Governments, it is extremely difficult for them to deal effectively all the aspects of disaster management according to the needs of the affected people.

Thus disaster management plan of the Jamui District has been prepared through incorporation of the features of Community Based Disaster Management and involvement of local governments, Municipalities etc.

7.4 SOCIO-ECONOMIC IMPACT OF THE PROJECT & SAFETY MEASURES INTRODUCTION

Socio-Economic Impact Assessment (SEIA) refers to systematic analysis of various social and economic characteristics of human being living in a given geographical area during a given period. The geographical area is often called Study Area or Impact Area. SEIA is carried out separately but concurrently with Environment Impact Assessment (EIA). The study area consists of core area where the project is located and a buffer area encircling the project area with a radius of 10 km from the periphery of the core area. For every new project or existing project under expansion or tied for modernization or change in product mix, Socio-economic Impact Assessment is mandatory. The Socio-economic impact assessment focuses the effect of the project on social and economic well-being of the

community. The impact may be direct or indirect. Further, the impact may be positive or negative.

OBJECTIVES OF SEIA

The prime objective of the current study is to assess the impact of the proposed mining project on socio-economic characteristics of people living in the neighborhoods. Further, it is to be established whether the impending impact would be direct or indirect. Furthermore, it is to be examined whether the said impact would be positive or negative. Lastly, it is to be comprehended if the impact is positive how long it would sustain or if it is negative how soon the same could be eased.

SCOPE

The Scope of the study is as follows:

- a) To collect baseline data of the study area
- b) To comprehend socio-economic status of the people living in the study area.
- To assess probable impact of the project on social and economic aspects in the study area.
- d) To measure the impact of the project on Quality of life of the people living in the study area.
- e) To ensure sustainability of positive impact.
- f) To suggest mitigation measures and agency responsible for taking action in case of adverse impact.

SOCIO-ECONOMIC IMPACT OF THE PROJECT

Impact on Demographic Composition

The proposed Project will hardly make any difference in the demographic composition of the study area as the additional employment it envisages to create will be met locally to the maximum extent. Hence, the chances of in-migration of people from outside the study area are remote. Accordingly, there will be no variation in the total population of the study area including that of sex ratio, when the mine starts operating.

Employment Opportunities

The proposed Project will provide employment to the local people. The number of workers to be deployed in the mining project will depend upon the quantity of minerals to be extracted from the mine by the lease holder. Both the miners and the unskilled workers will be recruited locally. It has estimated that around 16 people will get employment in this mining project for a period of ten months in a year. It is a positive impact of the project since it is providing employment opportunities to the local people. The project will not affect the vulnerable groups of people.

Increased supply of sand in the market

The demand for minerals is ever increasing with the growth of the infrastructure development in our country. Both Government departments and private developers have taken up construction of roads, bridges and buildings in a big way. The requirement for the building materials is always high and there is already an acute shortage of sand in the market and the construction industry is the main sufferer. With the commencement of the proposed mining project the supply of minerals will increase and the gap between demand & supply will decrease to some extent, if not fully.

Impact on agriculture

It is non-forest land and the proposed activity is to take place in the bed of the Kiul River. There will be no negative impact on agriculture as no cultivation is taking place on the proposed mining area. Since, scientific mining will be adopted in the proposed mining project the area will be free from annual floods, which destroy standing crops and land & property. This is a positive impact of the proposed mining project.

Impact on road development

Movement of trucks and other vehicles to and fro the mining site is expected to increase, when mining will start. The existing roads are connecting the quarry with the national highway connected by metalled followed by un-metalled roads. Hence, there is need for road maintenance and repairing regularly in the mining area. Further, there are risks of accidents during loading of extracted minerals into trucks and transportation to markets for sells. However, accidents can be avoided by taking due care and precautions.

Income to Government

The proposed mining activity will benefit the State in the form of royalty, dead rent, fees and earnings from taxes.

Impact on Law & Order

As most of the workers to be employed in the proposed mining project are local residents no law & order problem is envisaged. It is expected that the workers will attend to their duties from their residence and return to their homes after the day's work. There would have been law & order problem if the workers were migrants and lived in shanties closed to the mining area. However, to meet any untoward incident one police post may be set up closed to the mining site.

Impact on Health

There are no chances of occurring diseases, due to mining. The minerals excavated are non-toxic. To avoid respiratory problem from dust necessary protection should be taken.

Few safety measures are outlined below:

- a) Safe Working Environment: The project proponent shall ensure health and safety of all the employees at work. Efforts will be made to provide and maintain a safe work environment and ensure that the machinery and equipment in use is safe for employees. Further, it will be ensured that working arrangements are not hazardous to employees.
- b) Provision of First Aid: The first aid treatment reflects the hazards associated with the mining of minerals. The first-aiders will be well trained in handling patients working in the Project.
- c) **Regular Health Examination:** For all mine workers regular health examination will be made compulsory. Treatment of serious back injury; existing asthma or respiratory diseases, existing skin diseases, lung function test (pre and post ventolin), Audiograms, Chest X- ray etc. will also be taken care of.
- d) Health Education: Adequate health education and information related to the job will be provided to the workers. Baseline health information will be recorded for future references.
- e) **Tie-up with the Nearest Hospital for Medical Assistance:** To meet the medical needs of the mine workers tie-up with nearest hospitals will be made. Efforts will be

made to reserve few beds in the above hospitals for the workers of the mining project. This will ensure timely medical aid to the affected persons.

- f) Supply of Mask and Gloves: The workers in the Sand mining project are subject to respiratory diseases. For protection from dust it will be made compulsory for all workers to wear masks and gloves, while working in the mine.
- g) Administration of Anti-venom Injections: Provision of Anti-venom therapy will be made available for administration to the workers in case of snake, spider and insect bites, while working in the mine.
- h) **Special Telephone Number:** A special telephone number will be made available to the workers in case of emergency so that they can dial the same for–medical assistances. Further, efforts will be made to provide vehicles to the patients in short duration for shifting to a hospital.
- i) **Special Group Insurance Scheme:** All the mine workers will be covered under a Group Insurance Scheme of LIC or any other Insurance company.

CONCLUSION

The commissioning of the Sand Mining Project on Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar). provides employment to local people who are in search of the same. The granting of environment clearance to make mining of sand legally valid and it will generate revenue for the state. It is expected that prospective entrepreneurs will venture to set up industrial units in the vicinity in the near future making the area a mixed society, dependent on industry, trade and business. With the implementation of the project the occupational pattern of the people in the area will change making more people engaged in mining, industrial and business activities rather in agriculture only. The study area is still lacking in health and educational facilities. It is expected that same will improve to a great extent with opening of the project and associated industrial & business activities.

8.0 GENERAL

Various benefits are envisaged while planning for the mining of sand from Kiul River Bed. Sand is very important minor mineral and is the principal raw material for meeting the huge demand of construction material required in building construction and infrastructure works, road material for construction and maintenance of roads / highway; elastic ballast material for rail tracks in the State of Bihar & and nearby cities and towns of Bihar. The natural available materials in shoal deposits of Kiul River bed quarry site have been found suitable from techno-economic consideration.

8.1 PHYSICAL BENEFITS

The opening of the proposed project will enhance the following physical infrastructure facilities in the adjoining areas.

- a. **Road Transport:** There will be improved road communication due to the proposed project and maintenance will also be done time to time.
- b. **Market:** Generating useful economic resource for construction. Excavated minor mineral sand will provide a good market opportunity.
- c. **Enhancement of green cover:** As a part of reclamation plan, plantation will be carried along the river banks or along the road sides or near the civic amenities.
- a. Creation of community assets (infrastructure) like provision for drinking water, construction of school buildings, village roads/ linked roads, dispensary & health centre, community centre, market place etc, as a part of corporate social responsibility.

8.2 SOCIAL BENEFITS

- a) **Increase in Employment Potential due to the project activity:** Employment opportunities will increase both directly as well indirectly.
- b) **Contribution to the Exchequer** as the saleable minerals will be given royalty. Since the quarries will be leased out to successful allottees, mining operation in the state will get legalized and it will fetch income to the state exchequer.
- c) Increased Health related activities: Healthcare promotional activities will be undertaken. Pre-placement & and Periodic medical checkups will be done, which will lift the general health status of the residents of the area. Health camps, medical aids, family welfare programs, immunization camp, sports will be arranged.

Table-8.1, Budget for Public Health

S. No.	Activities recommended for communities level services	Tentative cost (Lakh Rs) For Each Mine
1	Awareness campaigns regarding health issues in the nearby villages.	1.0
2	Provide free health checkups & medicines to the nearby villagers of the project site.	1.0
3	Assistance to set up a temporary health center during the lease tenure.	0.50
	Total	2.5

- d) **Educational attainments**: Educational activities will be promoted by the lessee. Awareness program will be arranged covering basic issues related to primary level education, environment, health and hygiene etc.
- e) **Strengthening of existing community** facilities through the Community Development Programme.

Table 8.2, Budget for Occupational Health

Particulars	Recurring Cost per year (Rs.) For Each Mine	
For routine checkup	1,00,000	
Medical aid as per ESI Scheme	2,00,000	
Training	1,00,000	
Total	4,00,000	

8.3 ENVIRONMENTAL BENEFITS

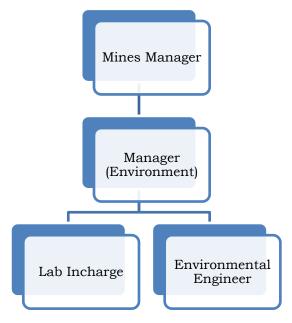
- a. Protection of banks
- b. Reducing submergence of adjoining agricultural lands due to flooding.
- c. Reducing aggradations of river level.
- d. Protection of crops being cultivated along the bank.
- e. A check on illegal mining activity.

8.4 CORPORATE ENVIRONMENTAL RESPONSIBILITY

2% of capital cost of the project cost will be allotted for the Corporate Environmental Responsibility as per OM dated 1st May 2018. The following has been proposed considering the needs & demand of the people.

CSR cost will be 2% of the total project cost. This amount will be used for social welfare. CSR COST is Rs. $2,01,64,000 \times 2\% = \text{Rs. } 4,03,280/$

For each activity the funds to be earmarked by the proponent will be decided after discussion with the local authority/people and the beneficiaries during Public Hearing. It has been planned to undertake a concurrent evaluation of the activities to be taken up under the CER programme.


9.0 INTRODUCTION

The environmental management must be integrated into the process of mine planning so that ecological balance of the area is maintained and adverse effects are minimized. The Environmental Management Plan (EMP) consists of a set of monitoring programme, mitigation measures, and management control strategies to minimize adverse environmental impacts.

The EMP has therefore been made considering implementation and monitoring of environmental protection measures during and after mining operations. Measures to be taken for each of the impact areas are detailed in the following paras:

9.1 ENVIRONMENTAL MANAGEMENT CELL (EMC)

It is imperative to establish an effective organization to implement, maintain, monitor and control the environmental management system. A separate Environmental Management Cell (EMC) will be formed to look after the environment related matter of the mine. The structure of EMC is as follows:

Figure 9.1 Environment Management Cell

The EMC will perform the following activities:

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- EMC will oversee that environmental control measures are implemented as per the plan.
- EMC will ensure ambient Field monitoring like air monitoring, meteorological monitoring and noise monitoring in coordination with outside agencies.
- Coordinating the environment related activities within the organization as well as with outside agencies.
- Reporting the status report to the statutory authorities.
- Systematically document and record keeping w.r.t. environmental issues.
- Plantation and their maintenance
- Collection statistics of health of workers and population of surrounding villages.
- Environmental compliance to the regulatory authorities.
- Communication with the concerned department on the environmental issue.
- Monitoring the progress of implementation of environmental management programme.

9.2 AIR POLLUTION CONTROL MEASURES

During the course of sand mining, no toxic substances are released into the atmosphere, so there seems to be no potential threat to health of human beings. In river bed mining activities, dust will be generated during mining, loading and transportation. The only source of fugitive gaseous emission during mining is vehicles which will be used for transportation. The environmental management for air pollution control includes:

- Plantation will be done along the road-sides and also the vacant land present under Gram
 Panchayat after consultation with local villagers/authority.
- Dust mask provided to the workers engaged at dust generation points like excavations, loading and unloading points.
- The only air pollution sources are the road transport network of the trucks. The dust suppression measures like water spraying will be done on the roads.
- Utmost care will be taken to prevent spillage of sand and stone from the trucks.

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- Water sprinkling will be done to reduce the emission of dust due to transportation of minerals.
- Overloading will be prevented. The trucks/ tractor trolley will be covered by tarpaulin covers.
- Plantation activities in consultation with village Panchayat along the roads will also reduce the impact of dust in the nearby villages.

9.3 WATER POLLUTION CONTROL MEASURES

During the operational phase of mine no waste water or industrial effluent will be generated. The environmental management for water pollution control includes:

- Water requirements for drinking, plantation and dust suppression will be met by tanker supply on the daily basis.
- Local people will be employed and no permanent housing will be done so no permanent
 drainage pattern for sewerage system is required as domestic sewage shall be disposed off
 into septic tank followed by soak pits.
- Mining in the area will be done up to depth of 1.0mmaximum from the surface level well above the ground water table, therefore impact on water regime is not anticipated.
- Monitoring of water quality of nearby surface water, ground water and domestic water will be conducted once in every season except monsoon to evaluate the performance of the mitigation measures.

9.4 NOISE POLLUTION CONTROL MEASURES

As there will be no heavy earth moving machinery there will not be any major impact on noise level due to sand mining and other association activities a detailed noise survey has been carried out and results were cross referenced with standards and were found to be well within limits. Blasting technique is not used for sand mining hence no possibility of land vibration. It was found that the proposed mining activity will not have any significant impact on the noise environment of the region. The only impact will be due to transportation of sand and by excavator involve trucks and tractor trolleys.

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- Proper maintenance of all machines is being carried out, which help in reducing generation of noise during operations.
- No other equipments accept the Transportation vehicles and Excavator and Loaders (as and when required) for loading is allowed.
- Noise generated by these equipments is intermittent and does not cause much adverse impact.
- Periodical monitoring of noise will be done to adopt corrective actions wherever needed.
- Plantation will be taken up along the approach roads. The plantation minimizes
 propagation of noise and also arrests dust.

9.5 BIOLOGICAL ENVIRONMENT

Although, there are no significant adverse impacts from the project, the following measures are proposed to minimize anticipated impacts:

- It will be ensured that no mining activity will be carried out during the monsoon season to minimize impact on aquatic life which is mainly breeding season for many of the species.
- As the mining site has no vegetation, no clearance of vegetation will be done.
- Prior to closure of mining operations / during the rainy season the eroded bank will be restored / reclaimed to minimize negative impacts on aquatic habitats.
- Sprinkling will be done on the haul roads with water to avoid the dust emission, thus avoiding damage to the crops.
- Mining will be carried out on the dry part of the lease area to avoid disturbance to the aquatic habitat and movement of fish species.
- No discard of food, polythene waste etc. will be allowed in the lease area which would distract/attract the wildlife.
- No night time mining will be allowed which may catch the attention of wild life.
- Workers will be made aware of the importance of the wildlife and signage will be displayed at the sensitive areas to caution the workers & other passerby.

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- Greenery development: The project will not lead to any tree cutting. However, asocial responsibility, greenery will be developed along the both sides of road and the bank of river. Community services will be deployed in raising these plantations. Trees of economic importance and native origin such as fruit trees shall be planted.
- Approx. 176 trees will be planted around haul road during the plan period.
- The trees proposed for plantation are:
- As per Sustainable Sand Management & Mining Guidelines 2016,minimum 5 plant per hectare will be proposed for development of greenbelt but in this cluster of projects 10 plants per hectare will be proposed for better condition of environment.
- Total Number of plants for cluster of Sand Bloks are given below.

Sand Ghat	Area (Ha)	Plants
Block 15	17.6	17.6*10 Plants= 176 plants
Total Plants		176 plants

Table 9.1:- List of Plant selected for Green Belt Development

	Agro-climatic zone & Sub zone	Middle Genetic Plains, North west alluvial sub zone		
S/n	Scientific name	Common Name	Pollution control features	
1	Mangiferaindica	Aam	Tolerant to Dust control	
2	Tectonagrandis	Sagon	Tolerant to Dust control	
3	Ficusbenghalensis	Bargad	Tolerant to Dust control	
4	Scigiumcumuni	Jamun	To stop river bank erosion	
5	Terminaliaarjuna	Arjun	To stop river bank erosion	
6	Populus ciliate	Popular	Fast growing, broad leaf	
7	Ficusreligiosa	Peepal	Dust particles absorbance	
8	Acacia nilotica	Babul	Tolerant to SO ₂	
9	Azadirachtaindica	Neem	Tolerant to SO ₂	
10	Pithecolibiumducle	Jungle jalebi	Tolerant to SO ₂ and Dust control	

9.6 LAND USE PLANNING

Degradation of land is not a very significant adverse impact of riverbed mining due to creation of access roads, mining operations, transportation of mined material. In order to prevent the environmental degradation of leased mine area and its surroundings, the following measures shall be taken;

- Mineral will be mined out after leaving sufficient safety zone from the bank as per sustainable sand mining guidelines-2016 for bank stability.
- The pits from where the material will be picked should not get deeper than 3.0 meter& shall follow the normal channel direction of the river.
- No foreign material shall be allowed to remain/spill in river bed and catchment area, or no
 pits/pockets will be allowed to be filled with such material.
- The mining is planned in non-monsoon seasons only, so that the excavated area gets replenished during the monsoon each year.
- Pits will get replenished naturally every year after monsoon.

9.7 OCCUPATIONAL HEALTH & SAFETY

Occupational safety and health is very closely related to productivity and good employer-employee relationship. The factor of occupational health in Sand Ghat of M/s- Ganesh Sai Contractor And Construction Pvt. Ltd. Vinay Kumar S/o Prahlad Yadav, Add.- Near Kiul Railway Station, Lakhisarai is mainly dust. Safety of employees during operation and maintenance etc. shall be as per Mines rules and regulations.

To avoid any adverse effect on the health of workers due to various pollutants, sufficient measures relating to safety and health will also be practiced:

- Provision of rest shelters for mine workers with amenities like drinking water, portable toilets etc.
- All safety measures like use of safety appliances, such as dust masks, shoes, non breakable goggles as the case may be, shall be ensured. Safety awareness programs, awards, posters, slogans related to safety etc. will be encouraged.

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

- Training of employees for use of safety appliances and first aid in vocational training center.
- Regular maintenance and testing of all equipment as per manufacturers' guidelines.
- Periodical Medical Examination (PME) of all workers by a Medical Officer.
- First Aid facility will be provided at the mine site.
- Close surveillance of the factors in working environment and work practices which may affect environment and worker's health.
- Working of mine as per approved mining plan and environmental plans.

9.8 SOCIO-ECONOMIC ENVIRONMENT

This project operation will provide livelihood to the poorest section of the society. The overall impact of riverbed mining of sand on the social economics of the area shall be a very positive one, as not only it will generate employment opportunities for local population at mine site for transportation of mined material, etc. It will also give a good boost to the general economy of the area.

The proposed mining activity is expected to provide stimulus to socio-economic activities in the region and thereby accelerate further development processes. However, there is an apprehension that local people may get engaged in illegal activities if the proposed mining operation or the project is shelved or there is in ordinate delay in its execution.

9.9 ENVIRONMENT POLICY

M/s- Ganesh Sai Contractor And Construction Pvt. Ltd. Vinay Kumar S/o Prahlad Yadav, Add.- Near Kiul Railway Station, Lakhisarai (Sand Block 15) of Sand Ghat believes that responsible environmental stewardship comprises diligent application of well-established natural resource management, controls and practices for the protection of the mined out land, preservation of biodiversity and proper disposal of waste if any following the best environmental practices during the process of mining.

Environmental policy prescribed for standard operating process to bring into focus any violation/deviation of the environment and forest norms/conditions that the company operations will implement operational and risk management practices that provide for

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

maximum protection of people and the environment. To this end, the owner resolves that company will follow the below mentioned practices:

Operate in accordance with prescribed industry standards while complying with all applicable environmental, health and safety laws and regulations.

- Establish and maintain a well-defined environmental, health and safety management system to guide its operations.
- Ensure that all employees, officers and directors understand and adhere to its environmental, health and safety management program.
- Provide operations with the necessary resources, expertise and training to effectively carry out its EHS management programs.
- Engage employees at all levels in programs directed towards minimizing adverse effects on the environment resulting from mining activity.
- Work proactively with governments and the public in the development of cost effective and realistic regulations that promote enhanced environmental, health and safety protection.
- Promote environmental awareness among its employees, their families and the communities in which it operates.
- Require those who provide services and products to practice good environmental stewardship.
- Mitigate its environmental impacts through efficient use of resources, and the reduction of input materials and waste.
- Maintain a high degree of emergency preparedness.

9.10 BUDGET ALLOCATION FOR EMP IMPLEMENTATION

Annual budget for EMC is very essential for successful implementation of EMP. Costs will be both Capital and Recurring cost as given below. The fund allocated will not be diverted for any other purposes and the top management will be responsible for this.

ENVIRONMENTAL MANAGEMENT PLAN

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Table 9.2, Budget of EMP (Block-15)

Sl. No	Description	Capital Cost (lakh)	Recurring Cost (lakh)
1	Pollution Control & Dust Suppression	Nil	1.5
2	Pollution Monitoring i) Air pollution ii) Water pollution iii) Soil pollution iv) Noise Pollution		2.0
3	Plantation and salary for one gardener (part time basis).	1.76	0.5
4	Haul road Maintenance Cost	1.60	1.5
	TOTAL	3.36	5.5

Note: *176 plants * 1000 Rs (for each plants including hedges and fences) =Rs 1,76,000/-

- Salary of Labour for haul road maintenance 2 labor*300=600 per day
- 600* 250= 1,50,000/-

• * 2.5 lakh per kilometer (2,50,000 *0.64 km haul road) = 1,64,000/-

10.0 INTRODUCTION

10.1 Purpose of the Report

Environmental Impact Assessment report is prepared to comply with the Terms of Reference (TOR) received from SEIAA, Bihar under EIA notification of the MoEF&CC dated 14th September, 2006 and its subsequent amendment there-off and also the EIA Guidance Manual for Mining of Minerals (Feb, 2010) of MoEF&CC, Govt. of India, for seeking environmental clearance for mining of Sand in the applied mining lease area.

10.2 IDENTIFICATION OF PROJECT & PROJECT PROPONENT

10.2.1 Identification of Project

The Proposed Sand Mining Project is located on Kiul River at **Jamui Kiul Block 15 Sand Ghat** At Mauza – Satgama, Block -Jamui, District- Jamui, (Bihar).

The proposed mining is a cluster of 03 mining lease area of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 over an combined area of 135.3 Ha is for river bed sand mining on Kiul River at Dist- Jamui, Bihar.

Cluster Situation: As per District Survey Report Jamui the Proposed Sand Ghats of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 are comes in cluster situation whose combined cluster area is 135.3 ha. All the lease area of homogeneous minerals is coming within 500 m radius from each other confirming a cluster situation.

As per the Director of Geology, Bihar, the modification of mining plan has been approved .As per EIA notification 2016 and subsequent amendments, the project is coming under category 'B' (B1) and the lease area is more than 5.0 Ha, approved Mining Plan, Prefeasibility Report and EMP are required for Environment Clearance in respect of the said quarry lease. Copy of letter is enclosed as **Annexure No. II.**

The Details of cluster is given below(As per DSR):

Sand Block Name	Area (Ha)	Production
Jamui Kiul Block 13	69.9	388104 TPA
Jamui Kiul Block 14	51.8	376980 TPA
Jamui Kiul Block 15	17.6	379452 TPA
Total	135.3	11,44,536 TPA

The proposed project is of River bed sand mining and falls under Category- "B1" as per EIA Notification 2006 and its subsequent amendments by Ministry of Environment Forests & Climate Change, GOI. Jamui Kiul Block 15 Sand Ghat fall in Mauza – Satgama, Block - Jamui Dist - Jamui (Bihar). over an area of 17.6 hectares.

10.3 BRIEF DESCRIPTION OF PROJECT

The proposed project is Open Cast Semi-Mechanized Mining of Sand with a proposed cluster production of 217536 Tonnes per annum. The project has been proposed by (Jamui Kiul Block 15 - M/s- Ganesh Sai Contractor And Construction Pvt. Ltd. Vinay Kumar S/o Prahlad Yadav, Add.- Near Kiul Railway Station, Lakhisarai).

The proposed project is over an area 17.6 ha on Kiul River at Mauza – Satgama, Block - Jamui, District- Jamui (Bihar). As per MoEF, New Delhi Gazette dated 14th September 2006 and amended thereof, the proposed mining project is categorized as **Category 'B-1'**. The estimated project cost for the proposed project is Jamui Kiul Block 15- **Rs**- 2,01,64,000 (including auction cost).

The proposed mining lease area falls in Survey of India Toposheet 72 L/01, 72 L/05, 72 K/04, 72 K/08.

The mine lease co-ordinates and connectivity details are listed below:

Table: 10.1 Mine lease Co-ordinates (Jamui Kiul Block 15)

		`
Pillar No	Latitude (N)	Longitude (E)
A	24°57'5.82"N	86°14'39.77"E
В	24°56'44.77"N	86°14'48.07"E
С	24°56'45.75"N	86°14'37.02"E
D	24°57'2.46"N	86°14'30.63"E

The details of environmental setting are given in **Table-10.2**.

Table-10.2: Details of Environmental Setting

Sr.	Particulars	Details		
No.				
1	Location			
a	Village	Mauza – Satga	ma	
b	Tehsil	Block -Jamui		
c	District	Jamui		
d	State	Bihar		
2	Elevation above	Jamui Kiul Blo	ock 15 (74.3 m	nRL -72.8 mRL)
3	Nearest National	NH 333A: Appr	ox. 0.80 KM t	owards West
	Highway/State	direction.		
	Highway			
4	Nearest Railway station	Blocks	Railway	Distance (Km)
			Station	Direction
		Jamui Kiul	Jamui	Jamui Station,
		Block 15	Railway	approx. 2.52 km towards
			Station	NEdirection.
5	Nearest Airport	Blocks	Airport	Distance (Km)
				Direction
		Jamui Kiul	JPN	JPN International
		Block 15	Internation	Airport Patna,
			al Airport	approx. 136 km
			Patna	towards NW
				direction.
6	Ecological Sensitive	There is no an	y Ecological	Sensitive Areas Like
	Areas	National Park,	Wildlife San	ctuaries, etc are found
	(Wildlife Sanctuaries)	within 10 km of the study area.		
7	Seismic Zone	Zone- IV		
		Source	BMTC	2^{nd} edition
		https://www.bmtpc.org/disaster%20resistnace%20technolgies		
		/ZONE%20IV.htm		

10.4 PROJECT DESCRIPTION

10.4.1 Salient features of mine lease

The salient features of mine lease are given below:

Table-10.3: Salient features of mine lease

Sr. No.	Parameter	Description
1	Name of the Mine	Sand Mining Project on Kiul River at Jamui
		Kiul Block 15 Sand Ghat At Mauza – Satgama,
		Block -Jamui, District- Jamui, (Bihar)
2	Mining Capacity	217536 TPA
3	Method of mining	Open cast semi-mechanized mining/OTFM
4	Total ML area	17.6 ha
5	Depth of mining	1 m depth
6	Manpower	17.6 persons
9	Water Requirement	Jamui Kiul Block 15 – 4.90 KLD
10	Source of Water	Tanker/ Nearby village.

10.4.2 Mineral Reserves and production

Mineable reserves have been computed up to 1m depth from surface. The volume multiplied by bulk density (2.06 kg/m3) to get the tonnage.

The minerals excavated from the river bed will be replenished gradually during the monsoon season every year. And the area pertaining to paleochannels of the river will be leveled & restored back.

Table 10.4 Classification Mineral Reserves

Sand Ghat	Area (Hect)	Geological Reserves (m3)	Mineable Reserves (m3)	Annual Mineable Permitted Reserve As per LoI (m3)
Jamui Kiul Block 15	17.6	176000	161268	105600

In the lease area the river flow being reduced and sediment load get deposited. During flood season, the area gets replenished with sediments and source of erosion at this location. It is a river bed deposit and mined out area shall be replenished each year during monsoon period and depth of quarry shall be filled back by river sand each year and area will restore its original topography.

10.4.3 Conceptual Plan

Mine Applied Area will be worked for Jamui Kiul Block 15 Sand Ghat. However, as the digging depth will be restricted to 1.0 m only. This will be further replenished during rainy season. Sand Ghat will be worked systematically as the width is limited while length is much more. As the lease period is only 5 (Five) years, some of the area will be left un-worked at the end of lease period.

- (i) Final Slope Angle to Be Adopted: Height of the bench is limited to 1.5 m while width of individual bench shall be kept 6.0m. River bank side will be protected by working in dry part of the river and by leaving safety distance of the width of the river of 5 meter. Bank side natural slope will not be disturbed. This will prevent collapse of bank and erosion. However, the height of the bank with respect to river bed is varying from 3-4 meters.
- (ii) During plan period workings will be carried out in the Sand Ghat at a time of the Applied Area simultaneously. Scattered workings will ensure safety, remove congestion of vehicles and will have better control and management.
- (iii)Ultimate Capacity of Dumps: There will be no OB removal / during the plan period. Therefore no proposal has been envisaged for its separate dumping. No outside material will be filled up in the extracted zone.

The conceptual plan & section of each mining plots are attached with mine plan.

10.4.4 Method of Mining

Mining activity will be carried out by open cast semi- mechanized method/OTFM. The operation will be semi-mechanized/OTFM with use of excavators/JCBs truck /tractors combination or Manually etc. The sand will be collected in its existing form.

10.5 AFFORESTATION PROGRAMME

Topsoil if any would be utilized for intensive plantation and greenbelt development, all along the bank of the river. The details of plantation and number of saplings to be planted are given below. Approx. 176 trees will be planted around haul road during the plan period.

10.6 LAND USE PATTERN

The mine lease area is flat river bed and river banks. There is no forest land or agriculture land in the mine lease area. The entire mining lease lies within River.

10.7 BASELINE ENVIRONMENTAL STATUS

10.7.1 Soil Quality

Three soil samples were collected in and around the mine lease area to assess the present soil quality of the region. The pH of the soil indicates that the soil is slightly alkaline in nature. Based on the results, it is evident that the soils are not contaminated by any polluting sources.

10.7.2 Meteorology

Meteorological data at the site was monitored during March To May 2023 representing winter season. It was observed that the during study period, temperature ranged from 21 0 C to 44.0 0 C.

10.7.3 Ambient Air Quality

Ambient Air Quality Monitoring (AAQM) has been carried out at 08 locations. The Particulate Matter (PM $_{10}$) conc. ranged of 52.38 µg/m 3 to 89.81 µg/m 3 . The Particulate Matter (PM $_{2.5}$) ranged from 32.15 µg/m 3 to 59.47 µg/m 3 . Sulphur dioxide (SO $_2$) between 4.6 µg/m 3 to 18.19 µg/m 3 ..Oxides of Nitrogen (NO $_2$) between form 9.28 µg/m 3 to 25.9 µg/m 3 .The results thus obtained indicate that the concentrations of PM10, SO $_2$ and NO $_2$ in the ambient air are well within the National Ambient Air Quality (NAAQ) standards for Residential and Rural areas.

10.7.4 Water quality

To assess the physical and chemical properties of water in the region, water samples from 03 locations were collected from various water sources around the mine lease area. The pH was varying for ground waters from 7.9 to 8.1. The total dissolved solids are varying from 228 mg/l to 288 mg/l.

The Surface water sampling was taken from 03 locations The analysis results indicate that the pH ranges between 7.3 to 7.4. Dissolved Oxygen (DO) was observed in the range of 5.5 to 7.1 mg/l against the minimum requirement of 4 mg/l. BOD values were observed to be in the range of 7.6 to 12.1 mg/l.

The results indicate groundwater is generally in conformity with the drinking water standards (IS: 10500).

10.7.5 Noise Quality

Noise monitoring reveals that the minimum & maximum noise levels at day time were recorded as 50.5dB(A) to 57.4 dB(A) respectively. The minimum & maximum noise levels at night time were found to be 40.2 dB (A) & 44.1 dB(A) respectively.

10.7.6 Ecological Environment

Based on the field studies and review of published literature, There is no any Ecological Sensitive Areas Like National Park, Wildlife Sanctuaries, etc are found within 10 km of the study area.

10.8 ANTICIPATED ENVIRONMENTAL IMPACTS

10.8.1 Impact on Air Environment

The proposed mining activities loading and movement of other transport vehicles used in mining will generate dust (SPM/RSPM). Proper water sprinkling shall be carried out at the mine site. The mineral will be transported by road through covered tarpaulin trucks/tippers to reduce the fugitive emission caused by the wind.

10.8.2 Impact on Water Environment

Mining of sand from within or near river has an indirect impact on the physico-chemical habitat characteristics during monsoon season. These characteristics include in stream roughness elements, depth, velocity, turbidity, sediment transport and stream discharge.

The detrimental effects, if any, to biota resulting from bed material mining are caused by following:

- Alteration of flow patterns resulting from modification of the river
- An excess of suspended sediment during monsoon season.

Project activity will be carried out only in the dry part of the Kiul River. Hence, none of the project activities affect the water environment directly. In the project, it is not proposed to divert or truncate any stream in monsoon season only. No proposal is envisaged for pumping of water either from the *River* (in monsoon) or tapping the ground water.

10.8.3 Impact on Water Quality

Analysis results of water samples collected from the buffer zone indicate that the pH, total dissolved solids (TDS) are well below the prescribed limits.

No wastewater generation is envisaged due to the mining operations. The sanitary wastewater will be sent to septic tanks.

10.8.4 Impact on Noise Environment

The proposed mining activity is semi-mechanized/OTFM in nature. No drilling & blasting is envisaged for the mining activity. Hence, the only impact is anticipated is due to movement of vehicles deployed for transportation of minerals. The vehicles will be maintained in good running condition so that noise will be reduced to minimum possible level.

10.8.5 Impact on Land Environment

The proposed extraction of stream bed materials, mining below the existing streambed, and alteration of channel-bed form and shape may lead to several impacts such as erosion of channel bed and banks, increase in channel slope, and change in channel morphology if, the operations are not carried out systematically.

The systematic and scientific removal of sand will not cause bed degradation. The silt and clay generated as waste will be used for plantation or filling up low lying area elsewhere. The mining is planned in non monsoon seasons only, so that the excavated area gets replenished gradually during the monsoons each year.

10.8.6 Impact on flora and fauna

As the proposed mining will be carried out in a scientific manner, not much significant impact is anticipated. No mining will be carried out during the monsoon season to minimize impact on aquatic life which is mainly breeding season for many of the species. The mining site has no vegetation; no clearance of vegetation will be done. Haul roads will be sprinkled with water which would reduce the dust emission, thus avoiding damage to the crops.

10.8.7 Impact on Socio - Economic Aspects

The mine area does not cover any habitation. Hence the mining activity does not involve any displacement of human settlement. No public buildings, places, monuments etc exist within the lease area or in the vicinity. The mining operation will not disturb/ relocate any village or need resettlement. Thus no adverse impact is anticipated. The impact of mining activity in the area is positive on the socio-economic environment of the region. Sand mining will be providing employment to local people whenever there is requirement of manpower.

SUMMARY & CONCLUSION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

10.9 ENVIRONMENTAL MANAGEMENT PLAN

- Extraction will be done from the bed leaving safety zone from bank.
- The maximum working depth will remain above ground water table of the area.
- Provide health facilities to the workers & surrounding people in the impact area to reduce the health impacts.
- Ensuring wildlife protection & arranging awareness campaigns for the same.
- Minimize activities that release fine sediment to the river.
- Effective mitigation measures will be adopted to minimize disturbance during transportation & handling of minerals:
- Establishment of reclamation program with plantation of local/native & fast growing species
- Establishment of restoration plan during the closure of mine at the onset of monsoon season.
- Establishment of effective Disaster Management Plan to take timely precautionary measures to avoid effects of impending disasters.
- Establishment of effective Monitoring Program monitored by Environment Management Cell.

10.10 ENVIRONMENTAL MONITORING PROGRAM

Table 10.5: Post project environmental monitoring

S.No.	Description of Parameters	Schedule of Monitoring
1	Air Quality	24 hourly samples twice a week in each season except
		monsoon
2	Water Quality (Surface &	Once a season for 4 seasons in a year
	Groundwater)	
3	Soil Quality	Once in a year in project area
4	Noise Level	Twice a year for first two years & then once a year
5	Socio-economic Condition	Once in 3 years
6	Plantation Monitoring	Once in a season

10.11 ENVIRONMENTAL PROTECTION COST

The details of the cost to be incurred for successful monitoring of environmental parameters and implementation of control measures are given in **Table-10.6**.

Table 10.6: Cost of Environmental Protection Measures

Table 10.6 (a), Budget of EMP (Jamui Kiul Block 15)

Sl. No	Description	Capital Cost (lakh)	Recurring Cost (lakh)
1	Pollution Control & Dust Suppression	Nil	1.5
2	Pollution Monitoring i) Air pollution ii) Water pollution iii) Soil pollution iv) Noise Pollution	+	2.0
3	Plantation and salary for one gardener (part time basis).	1.76	0.5
4	Haul road Maintenance Cost	1.60	1.5
	TOTAL	3.36	5.5

Note: *176 plants * 1000 Rs (for each plants including hedges and fences) =Rs 1,76,000/-

- Salary of Labour for haul road maintenance 2 labor*300=600 per day
- 600* 250= 1,50,000/-
- * 2.5 lakh per kilometer (2,50,000 *0.64 km haul road) = 1,64,000/-

10.12 ADDITIONAL STUDIES

10.12.1 Risk Assessment

The complete mining operation will be carried out under the management control and direction of a qualified mine manager holding. The DGMS have been regularly issuing standing orders, model, standing orders and circulars to be followed by the mine management in case of disaster, if any.

10.12.2 Disaster Management Plan

Emergency preparedness is an important aspect in the planning of Disaster Management. Personnel would be trained suitably and prepared mentally and physically in emergency response through carefully planned, simulated procedures. Similarly, the key personnel and essential personnel shall be trained in the operations.

10.12.3 Public Consultation

This is a draft EIA report. Public Hearing will be incorporated in FEIA report.

10.13 PROJECT BENEFITS

Physical Benefits: Road Transport, Market, Enhancement of green cover & Creation of community assets.

Social Benefits: Increase in Employment Potential, Contribution to the Exchequer, Increased Health related activities, Educational attainments & Strengthening of existing community facilities.

Environmental Benefits:

- ➤ Controlling river channel and protection of banks.
- ➤ Reducing submergence of adjoining agricultural lands due to flooding.
- Reducing aggradation of river level.
- > A check on illegal mining activity.

Corporate Social Responsibility

2% of capital cost of the project cost will be allotted for the Corporate Environmental Responsibility as per OM dated 1st May 2018. The following has been proposed considering the needs & demand of the people.

CSR cost will be 2% of the total project cost. This amount will be used for social welfare.

CSR COST is Rs. $2,01,64,000 \times 2\% = \text{Rs. } 4,03,280/-$

For each activity the funds to be earmarked by the proponent will be decided after discussion with the local authority/people and the beneficiaries during Public Hearing. It has been planned to undertake a concurrent evaluation of the activities to be taken up under the CER programme.

10.14 CONCLUSIONS

- The mining operations will meet the compliance requirements of MoEF&CC;
- Community impacts will be beneficial, as the project will generate significant economic benefits for the region;
- Monitoring program will be followed till the mining operations continue.

SUMMARY & CONCLUSION

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

• With the effective implementation of the Environment Management Plan (EMP) during the mining activities, the proposed project can proceed without any significant negative impact on environment.

DISCLOSURE OF CONSULTANT

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

CONSULTANT

Name of the Consultant	P and M Solution	
Address	C-88, Sector 65, Noida -201301 – U.P	
Credentials	Accredited by QCI/NABET	
Consultant accreditation details are given below:		

Quality Council of India

National Accreditation Board for Education & Training

CERTIFICATE OF ACCREDITATION

P and M Solution

First Floor, C-88, Sector-65, Noida, Uttar Pradesh- 201301

Accredited as Category -A organization under the QCI-NABET Scheme for Accreditation of EIA Consultant Organizations: Version 3 for preparing EIA/EMP reports in the following sectors:

SI.		Sector (as per)		Cat.
No	Sector Description		MoEFCC	Cat.
1.	Mining of minerals including opencast / underground mining		1 (a) (i)	Α
2.	River Valley projects	: 3	1 (c)	В
3,	Metallurgical industries (ferrous & non-ferrous)	- 8	3 (a)	В
4.	Highways,	34	7 (f)	Α
5.	Building and construction projects	38 -	8 (a)	В
6.	Townships and Area development projects	39	8 (b)	В

Note: Names of approved EIA Coordinators and Functional Area Experts are mentioned in IA AC Minutes dated December 20, 2019 on QCI-NABET website.

The Accreditation shall remain in force subject to continued compliance to the terms and conditions mentioned in NABET's letter of accreditation bearing no. QCI/NABET/ENV/ACO/20/1223 dated February 3, 2020. The accreditation needs to be renewed before the expiry date by P and M Solution, Noida following due process of assessment.

Sr. Director, NABET
Dated: February 3, 20

Certificate No. NABET/EIA/1922/IA0053 Valid till Dec 10, 2022

For the updated List of Accredited EIA Consultant Organizations with approved Sectors please refer to QCI-NABET webs

DISCLOSURE OF CONSULTANT

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

National Accreditation Board for Education and Training

QCI/NABET/ENV/ACO/23/2770

June 02, 2023

To

P and M Solution

C-88, Sector-65 Noida Noida, UP

Sub.: Extension of Validity of Accreditation till Sept 01, 2023 - regarding

Ref.. 1. Certificate no. NABET/EIA/1922/IA0053

2. Request e-mail dated May 30, 2023

Dear Sir/Madam

This has reference to the accreditation of your organization under the QCI-NABET EIA Scheme, the validity of **P and M Solution** is hereby extended till Sept 01, 2023 or completion of the assessment process, whichever is earlier.

The above extension is subject to the submitted documents/required information with respect to your application and timely submission and closure of NC/Obs during the process of assessment.

You are requested not to use this letter after expiry of the above stated date.

With best regards.

(A K Jha)

Sr. Director, NABET

DISCLOSURE OF CONSULTANT

Project: Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block - Jamui, District- Jamui, (Bihar)

Consultant Contact Details:

P and M Solution

Address -C-88, Sector 65 Noida

Mobile no. - +8377871554, 8826287364

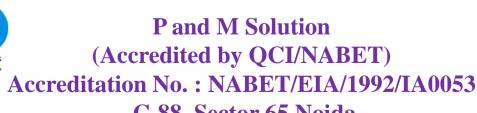
S No	Name	EC/FAE	DETAILS
1	Pravin Kumar Sinha	EC	EC
2	Pravin Kumar Sinha	FAE	GEO
3	TapanMajumdar	FAE	HG
4	Subhash Kumar	FAE	SC
5	Manoj Kumar Pandey	FAE	EB
6	R K Tiwary	FAE	RH,AP
7	Rahul kumar	FAE	AQ
8	AbhayNath Mishra	FAE	SE
9	HussainZiauddin	FAE	WP
10	PoonamKumariMangalam	FAE	LU
11	Jatinkumarsrivastava	FAE	NV

EXECUTIVE SUMMARY

FOR

SAND MINING PROJECT ON KIUL RIVER AT (JAMUI KIUL BLOCK - 15) SAND GHAT

At


Mauza – Satgama, Block- Jamui, District- Jamui, State – Bihar

Area: 17.60 Ha. Production: 217536 TPA

PROJECT PROPONENT

M/s- Ganesh Sai Contractor And Construction Pvt. Ltd.
Vinay Kumar,
S/o- Prahlad Yadav,
Add.- Near Kiul Railway Station, Lakhisarai

Environment Consultant

C-88, Sector 65 Noida www.pmsolution.in

EXECUTIVE SUMMARY

INTRODUCTION

As per MoEF & CC, New Delhi Gazette dated 14th September 2006 and amended thereof, the proposed mining project is categorized as **Category 'B1'** project.

Jamui Kiul Block 15

The project has been proposed by M/s- Ganesh Sai Contractor And Construction Pvt. Ltd. (Vinay Kumar). The Proposed Sand Mining Project is located on Kiul River at Jamui Kiul Block 15 Sand Ghat At Mauza – Satgama, Block -Jamui, District- Jamui, (Bihar). LOI issued to lessee via letter no 2073 dated 05-12-2022. The Draft EIA report has been prepared according to EIA notification 2006 and its subsequent amendment thereof. TOR of the proposed project has been issued by SEIAA Bihar dated 21-04-2023.

Cluster Situation: As per District Survey Report Jamui the Proposed Sand Ghats of Jamui Kiul Block 13, Jamui Kiul Block 14 & Jamui Kiul Block 15 are comes in cluster situation whose combined cluster area is 135.3 ha. All the lease area of homogeneous minerals is coming within 500 m radius from each other confirming a cluster situation.

The Details of cluster is given below (As per DSR):

Sand Block Name	Area (Ha)	Production
Jamui Kiul Block 13	69.9	388104 TPA
Jamui Kiul Block 14	51.8	376980 TPA
Jamui Kiul Block 15	17.6	379452 TPA
Total	135.3	11,44,536 TPA

It has been proposed to mine around 217536 TPA for applied lease. The estimated project cost for the proposed project is **Rs** 2,01,64,000/- (including auction cost)

PROJECT DESCRIPTION

LOCATION

The proposed mining lease area falls in Survey of India Toposheet Topo sheet No- 72 L/01, 72 L/05, 72 K/04, 72 K/08. The lease area is located in Mauza – Satgama, Block -Jamui, District-Jamui, (Bihar). The mine lease co-ordinates are listed below:

Pillar No	Latitude (N)	Longitude (E)
A	24°57'5.82"N	86°14'39.77"E
В	24°56'44.77"N	86°14'48.07"E
С	24°56'45.75"N	86°14'37.02"E
D	24°57'2.46"N	86°14'30.63"E

Area & production: The total ML area is 17.6 Ha. Proposed rate of production will be 217536 TPA.

Connectivity:

Sand Ghat is well connected to the nearest metalled road 0.64 km distance from the lease. NH 333A: Approx. 0.80 KM towards West direction. Jamui Station, approx. 2.52 km towards NE direction. JPN International Airport Patna, approx. 136 km towards NW direction.

Salient Features of Project

Name of the applicant	M/s- Ganesh Sai Contractor And Construction Pvt. Ltd.
	Vinay Kumar
Address of Lessee	M/s- Ganesh Sai Contractor And Construction Pvt. Ltd.
	Vinay Kumar S/o Prahlad Yadav,
	Add Near Kiul Railway Station, Lakhisarai
Name of Mine	Sand Mining Project on Kiul River at Jamui Kiul Block 15 Sand Ghat
Village	Mauza – Satgama
District & State	Jamui, Bihar
Mineral	Sand
Area (ha)	17.6 hectare

MINING

The mining process is opencast semi-mechanized method without drilling & blasting. This is an open-cast mining project. The operation will be semi-mechanized/OTFM with use of excavators/JCBs truck /tractors combination or Manually etc. The sand will be collected in its existing form.

The mining will be done in a rotational way. As the working is going to be methodical i.e. mining will be done in benches. There would be no risk to the employee working in the mines. Mining will be done in layers.

The deposit will be worked from the surface of the bed up to 1 m bgl or above ground water level, whichever comes first. Hence, at no point of time mining will intersect with ground water table. Mining will be done only during the day time and completely stopped during the monsoon season.

RESERVE AND PRODUCTION

Mineable reserves have been computed up to 1m depth from surface. The volume multiplied by bulk density (2.06 kg/m3) to get the tonnage.

The bench-wise annual exploitation of sand of is given below:

Table Summary of minable reserves of Jamui Kiul Block 15 Sand Ghat

Bench Level (mRL)	Length (m)	Width (m)	Depth (m)	Volume (cum)	Tonnes
74 - 73	604	267	1	161268	332212
Total				161268	332212

Total Mineable Reserve = 161268 CUM or 332212 Tonnes

Table Classification Mineral Reserves:

Sand Ghat	Area (Hect)	Geological Reserves (m3)	Mineable Reserves (m3)	Annual Mineable Permitted Reserve As per LoI (m3)
Jamui Kiul Block 15	17.6	176000	161268	105600

It is a river bed deposit and mined out area shall be replenished each year during monsoon period and depth of quarry shall be filled back by river sand each year and area will restore its original topography.

SITE FACILITIES AND UTILITIES

Water Supply

Water will be provided to workers for drinking & domestic purpose. Water will also be required for dust suppression. A total water of 4.90 KLD will be required for the proposed project. Fresh water will be only used for drinking purpose. The water will be supplied from available sources from nearby village.

Temporary Rest Shelter

A temporary rest shelter will be provided for the workers near to the site for rest. In addition, First aid box along with anti-venoms to counteract poison produced by certain species of small insects, if any and sanitation facility i.e. septic tank or community toilet facility will be provided for the workers.

BASELINE ENVIRONMENTAL STATUS

Environmental data has been collected in relation to proposed mining for Air, Noise, Water, Soil, Flora & Fauna. The baseline environment study was carried out over an area with radial distance of 10 km around the mining lease area during pre monsoon season from March 2023 to May 2023.

Meteorology

The Summarized Meteorological Data for the Monitoring Period (March 2023 to May 2023.) is given below:

	Temperature °C		Wind Speed (Km/Hr)		
Month	Min	Max	Average	Max	
MARCH 2023	21	38	9.8	21.8	
APRIL 2023	26	44	12.8	25.4	
MAY 2023	27	44	12.9	25.7	

Table Baseline Environmental Status

Attribute	Baseline status		
Ambient Air Quality	Ambient Air Quality Monitoring reveals that the minimum &		

	maximum concentrations of PM2.5 amongst all the 08 AQ		
	monitoring stations were found to be 32.15 μ g/m ³ to 59.47 μ g/m ³		
	respectively; PM10 was in the range of 52.38 μg/m ³ to 89.81 μg/m ³		
	As far as the gaseous pollutants SO ₂ and NO ₂ are concerned, the		
	prescribed CPCB limit of 80 µg/m³ for residential and rural areas		
	has never been surpassed at any station.		
Noise Levels	The results of the monitoring program indicated that both the		
	daytime and night time levels of noise were well within the		
	prescribed limits of NAAQS, at all the locations monitored.		
Water Quality	The ground water from all sources remains suitable for drinking		
	purposes as all the constituents are within the limits prescribed by		
	drinking water standards promulgated by IS: 10500.		
	Surface water analysis from River Kiul results it is evident that		
	most of the parameters of the samples comply with 'Category'		
	standards of CPCB, indicating their suitability for outdoor bathing.		
Soil Quality	Samples collected from identified locations indicate the soil is		
	sandy type and the pH value ranging from 7.36 to 8.04, which		
	shows that the soil is slightly alkaline in nature.		
Ecology and	There is no Eas Capaitive Areas in the study area		
Ecology and	There is no Eco-Sensitive Areas in the study area.		
Biodiversity			

ANTICIPATED ENVIRONMENTALIMPACTS

Impact on Air Environment

The proposed mining activities loading and movement of other transport vehicles used in mining will generate dust (SPM/RSPM). Proper water sprinkling shall be carried out at the mine site. The mineral will be transported by road through covered tarpaulin trucks/tippers to reduce the fugitive emission caused by the wind.

Impact on Water Environment

Mining of sand from within or near *river* has an indirect impact on the physico-chemical habitat characteristics during monsoon season. These characteristics include in stream roughness, elements, depth, velocity, turbidity, sediment transport and stream discharge.

The detrimental effects, if any, to biota resulting from bed material mining are caused by following:

- Alteration of flow patterns resulting from modification of the *river*
- An excess of suspended sediment during monsoon season.

Project activity will be carried out only in the dry part of the Kiul River. Hence, none of the project activities affect the water environment directly. In the project, it is not proposed to divert or truncate any stream in monsoon season only. No proposal is envisaged for pumping of water either from the *River* (in monsoon) or tapping the ground water.

Impact on Land Environment

The proposed extraction of stream bed materials, mining below the existing streambed, and alteration of channel-bed form and shape may lead to several impacts such as erosion of channel bed and banks, increase in channel slope, and change in channel morphology if, the operations are not carried out systematically.

The systematic and scientific removal of sand will not cause bed degradation. The silt and clay generated as waste will be used for plantation or filling up low lying area elsewhere. The mining is planned in non monsoon seasons only, so that the excavated area gets replenished gradually during the monsoons each year.

Impact on Noise Environment

The proposed mining activity is semi-mechanized in nature. No drilling & blasting is envisaged for the mining activity. Hence, the only impact is anticipated is due to movement of vehicles deployed for transportation of minerals. The vehicles will be maintained in good running condition so that noise will be reduced to minimum possible level.

Impact on Biological Environment

As the proposed mining will be carried out in a scientific manner, not much significant impact is anticipated. No mining will be carried out during the monsoon season to minimize impact on aquatic life which is mainly breeding season for many of the species. The mining site has no

vegetation; no clearance of vegetation will be done. Haul roads will be sprinkled with water which would reduce the dust emission, thus avoiding damage to the crops.

Impact on Socio Economic Environment

The impact of mining activity in the area is positive on the socio-economic environment of the region. Sand mining will be providing employment to local people whenever there is requirement of manpower.

POST PROJECT ENVIRONMENTAL MONITORING

S.No.	Description of Parameters	Schedule of Monitoring
1	Air Quality	24 hourly samples twice/thrice a week in each season except monsoon
2	Water Quality (Surface & Groundwater)	Once a season for 4 seasons in a year
3	Soil Quality	Once in a year in project area
4	Noise Level	Twice a year for first two years & then once a year
5	Socio-economic Condition	Once in 3 years
6	Plantation Monitoring	Once in a season

ADDITIONAL STUDIES

Public Hearing

Public hearing is yet to be conducted.

Risk Assessment

The complete mining operation will be carried out under the management control and direction of a qualified mine manager holding. The DGMS have been regularly issuing standing orders, model standing orders and circulars to be followed by the mine management in case of disaster, if any. Moreover, mining staff will be sent to refresher courses from time to time to keep them alert.

Disaster Management Plan

Emergency preparedness is an important aspect in the planning of Disaster Management. Personnel would be trained suitably and prepared mentally and physically in emergency response through carefully planned, simulated procedures. Similarly, the key personnel and essential personnel shall be trained in the operations.

PROJECT BENEFITS

Physical Benefits: Road Transport, Market, Enhancement of green cover & Creation of community assets.

Social Benefits: Increase in Employment Potential, Contribution to the Exchequer, Increased Health related activities, Educational attainments & Strengthening of existing community facilities.

Environmental Benefits:

- ➤ Controlling *river* channel and protection of banks.
- ➤ Reducing submergence of adjoining agricultural lands due to flooding.
- ➤ Reducing aggradation of *river* level.
- A check on illegal mining activity.

CORPORATE SOCIAL RESPONSIBILITY

2% of capital cost of the project cost will be allotted for the Corporate Environmental Responsibility as per OM dated 1st May 2018. The following has been proposed considering the needs & demand of the people.

CER cost for **Jamui Kiul Block 15** will be 2% of the total project cost. This amount will be used for social welfare. CSR COST is Rs. $2,01,64,000 \times 2\% = \text{Rs. } 4,03,280/$

For each activity the funds to be earmarked by the proponent will be decided after discussion with the local authority/people and the beneficiaries during Public Hearing. It has been planned to undertake a concurrent evaluation of the activities to be taken up under the CER programme.

PLANTATION:

 The project will not lead to any tree cutting. However, asocial responsibility, greenery will be developed along the both sides of road and the bank of river. Community services will be deployed in raising these plantations. Trees of economic importance and native origin such as fruit trees shall be planted.

- Approx. 176 trees will be planted around haul road during the plan period.
- The trees proposed for plantation are:
- As per Sustainable Sand Management & Mining Guidelines 2016, minimum 5 plant per hectare will be proposed for development of greenbelt but in this cluster of projects 10 plants per hectare will be proposed for better condition of environment.
- Peepal, Arjun, Jamun, Neem, Mango etc trees will be planted.

ENVIRONMENTAL MANAGEMENT PLAN (EMP)

- Extraction will be done from the bed leaving safety zone from bank.
- The maximum working depth will remain above ground water table of the area.
- Provide health facilities to the workers & surrounding people in the impact area to reduce the health impacts.
- Ensuring wildlife protection & arranging awareness campaigns for the same.
- Minimize activities that release fine sediment to the *river*.
- Effective mitigation measures will be adopted to minimize disturbance during transportation & handling of minerals
- Establishment of reclamation program with plantation of local/native & fast growing species
- Establishment of restoration plan during the closure of mine at the onset of monsoon season.
- Establishment of effective Disaster Management Plan to take timely precautionary measures to avoid effects of impending disasters.
- Establishment of effective Monitoring Program monitored by Environment Management Cell.

BUDGET ALLOCATION FOR EMP IMPLEMENTATION

Table, Budget of EMP (Jamui Kiul Block 15)

Sl. No	Description	Capital Cost (lakh)	Recurring Cost (lakh)
1	Pollution Control & Dust Suppression	Nil	1.5

2	Pollution Monitoring i) Air pollution ii) Water pollution iii) Soil pollution iv) Noise Pollution		2.0
3	Plantation and salary for one gardener (part time basis).	1.76	0.5
4	Haul road Maintenance Cost	1.60	1.5
	TOTAL	3.36	5.5

Note: *176 plants * 1000 Rs (for each plants including hedges and fences) =Rs 1,76,000/-

- Salary of Labour for haul road maintenance 2 labor*300=600 per day
- 600* 250= 1,50,000/-
- * 2.5 lakh per kilometer (2,50,000 *0.64 km haul road) = 1,64,000/-

CONCLUSION

Based on the EIA study it is observed that there will be an increase in the dust pollution, which will be controlled by sprinkling of water and plantation. There will be an insignificant impact on ambient environment and ecology due to the mining activities moreover the mining operation will lead to direct and indirect employment generation in the area. Green belt development around the area will also be taken up as an effective pollution mitigative technique, as well as to control the pollutants released from the premises of the Mine. Monitoring program will be followed till the mining operations continue. Hence, it can be summarized that the development of the mine will have a positive impact on the socioeconomic environment of the area and lead to sustainable development of the region.

कार्यकारी सारांश

रेत खनन परियोजना (जमुई किउल नदी ब्लॉक 15 रेत घाट) के लिए

> मौजा- सतगामा, ब्लॉक- जमुई, जिला- जमुई, बिहार

क्षेत्रफल- 17.60 हेक्टेयर उत्पादन: 217536 टन प्रति वर्ष

आवेदन कर्ता

मेसर्स गणेश साईं कॉन्ट्रैक्टर एंड कंस्ट्रक्शन प्रा. लि. विनय कुमार पुत्र- प्रहलाद यादव पता.- किउल रेलवे स्टेशन के पास, लखीसराय, बिहार

एनवायरनमेंट कन्सल्टेंट

(क्वालिटी कौंसिल ऑफ़ इंडिया द्वारा मान्यता प्राप्त) सी-88 सेक्टर 65 गॉएडा उत्तर-प्रदेश

www.pmsolution.in

Accreditation No.: NABET/EIA/1992/IA0053

कार्यकारी सारांश

❖ परिचय

MoEF & CC (एमओईएफ एंड सीसी), नई दिल्ली राजपत्र दिनांक 14 सितंबर 2006 और उसमें समय समय पर किये गए संशोधन के अनुसार, प्रस्तावित खनन परियोजना को श्रेणी 'बी1' परियोजना के रूप में वर्गीकृत किया गया है।

जमुई किउल ब्लॉक 15

परियोजना के प्रस्ताव मेसर्स गणेश साईं कॉन्ट्रैक्टर एंड कंस्ट्रक्शन प्रा. लि. (विनय कुमार) ने दिया है। प्रस्तावित रेत खनन परियोजना मौजा- सतगामा, ब्लॉक- जमुई, जिला- जमुई (बिहार) में ब्लॉक संख्या - 15 रेत घाट पर किउल नदी पर स्थित है। पत्र संख्या 2073/एम दिनांक 05.12.2022 के माध्यम से पट्टेदार को एलओआई जारी किया गया।

ईआईए अधिसूचना 2006 और इसके बाद के संशोधन के अनुसार ड्राफ्ट ईआईए रिपोर्ट तैयार की गई है। प्रस्तावित परियोजना का टीओआर SEIAA बिहार दिनांक 21.04.2023 द्वारा जारी किया गया है।

क्लस्टर स्थिति: जिला सर्वेक्षण रिपोर्ट जमुई के अनुसार जमुई िकउल ब्लॉक 13, ब्लॉक 14, और ब्लॉक 15 के प्रस्तावित रेत घाट क्लस्टर स्थिति में आते हैं जिनका संयुक्त क्लस्टर क्षेत्र 135.3 हेक्टेयर है। खिनजों का समस्त पट्टा क्षेत्र एक दूसरे से 500 मीटर के दायरे में आ रहा है जो एक समूह स्थिति की पृष्टि करता है।

क्लस्टर का विवरण नीचे दिया गया है:

ब्लॉक का नाम	क्षेत्र (हे),	उत्पादन (टीपीए)
जमुई किउल ब्लॉक 13	69.9	388104
जमुई किउल ब्लॉक 14	51.8	376980
जमुई किउल ब्लॉक 15	17.6	379452
कुल	135.3	11,44,536

आवेदित पट्टे के लिए प्रति वर्ष लगभग 217536 टन खनन प्रस्तावित किया गया है, प्रस्तावित परियोजना के लिए अनुमानित परियोजना लागत 2,01,64,000/- रुपये (नीलामी लागत सहित) है।

परियोजना विवरण

स्थिति:

जमुई किउल ब्लॉक 15

प्रस्तावित खनन पट्टा क्षेत्र सर्वे ऑफ इंडिया टोपोशीट टोपो शीट संख्या- 72 L/01, 72 L/05, 72 K/04, 72 K/08 के अंतर्गत आता है। पट्टा क्षेत्र मौजा- सतगामा, ब्लॉक- जमुई, जिला- जमुई, राज्य- बिहार में स्थित है। खान पट्टा समन्वय नीचे सूचीबद्ध हैं:

स्तंभ	अक्षांश (एन)	देशांतर (ई)
Α	24°57'5.82"N	86°14'39.77"E
В	24°56'44.77"N	86°14'48.07"E
С	24°56'45.75"N	86°14'37.02"E
D	24°57'2.46"N	86°14'30.63"E

💠 क्षेत्र और उत्पादन: कुल क्षेत्रफल 17.6 हेक्टेयर है। उत्पादन की प्रस्तावित दर 217536 टीपीए है।

संयोजकता

रेत घाट पट्टे से 0.64 कि.मी. की दूरी पर निकटतम पक्की सड़क से अच्छी तरह से जुड़ा हुआ है। NH 333A लगभग 0.80 किमी पश्चिम दिशा में है जमुई रेलवे स्टेशन, लगभग 3.52 किमी उत्तर पूर्व दिशा की ओर है। जयप्रकाश नारायण एयरपोर्ट, पटना लगभग 136 किमी उत्तर पश्चिम दिशा की ओर है।

परियोजना की मुख्य विशेषताएं

आवेदक का नाम	मेसर्स गणेश साईं कॉन्ट्रैक्टर एंड कंस्ट्रक्शन प्रा. लि.
	(विनय कुमार)
पट्टेदार का पता	मेसर्स गणेश साईं कॉन्ट्रैक्टर एंड कंस्ट्रक्शन प्रा. लि.
	विनय कुमार पुत्र- प्रहलाद यादव
	पता किउल रेलवे स्टेशन के पास,
	लखीसराय, बिहार
नाम	रेत खनन परियोजना (जमुई किउल नदी ब्लॉक 15 रेत घाट)
गाँव	मौजा - सतगामा
जिला और राज्य	जमुई, बिहार
खनिज	रेत
क्षेत्र (हेक्टेयर)	17.6 हेक्टेयर

❖ ड्रिलिंग

ड्रिलिंग और ब्लास्टिंग की आवश्यकता नहीं हैं।

खिनज का उपयोग

रेत का उपयोग निर्माण कार्यों में किया जाता है सड़क निर्माण में भी इसका उपयोग किया जाता है

❖ खनन

खनन प्रक्रिया ड्रिलिंग और ब्लास्टिंग के बिना खुली अर्ध-मशीनीकृत विधि है। यह एक ओपन कास्ट माइनिंग प्रोजेक्ट है। उत्खनन/जेसीबी ट्रक/ट्रैक्टर संयोजन या मैन्युअल आदि के उपयोग के साथ संचालन अर्ध-मशीनीकृत/ओटीएफएम होगा। रेत को अपने मौजूदा रूप में एकत्र किया जाएगा।

खनन रोटेशनल तरीके से किया जाएगा। चूंकि काम व्यवस्थित होने जा रहा है यानी बेंचों में खनन किया जाएगा। खदान में काम करने वाले कर्मचारी को कोई खतरा नहीं होगा। खनन परतों में किया जाएगा। निक्षेप को संस्तर की सतह से 01 एमबीजीएल या भूजल स्तर से ऊपर, जो भी पहले आए, तक कार्य किया जाएगा। इसलिए, किसी भी समय खनन भूजल स्तर को नहीं काटेगा। खनन केवल दिन के समय किया जाएगा और मानसून के मौसम में पूरी तरह बंद कर दिया जाएगा।

रिजर्व और उत्पादन

खनन योग्य भंडार की गणना सतह से 1 मीटर की गहराई तक की गई है। टनभार प्राप्त करने के लिए वॉल्यूम को बल्क डेंसिटी (2.06 g/cm3) से गुणा किया जाता है।

हर साल मानसून के मौसम के दौरान नदी तल से उत्खनन किए गए खनिजों की फिर से भरपाई (रिप्लेनिशमेंट) हो जाएग। नदी के पैलियो चैनल से संबंधित क्षेत्र को समतल करके वापस बहाल किया जाएगा।

बेंचवार रेत का वार्षिक दोहन नीचे दिया गया है:

तालिका खनन योग्य भंडार का सारांश

बेंच स्तर (mRL)	लंबाई (M)	चौड़ाई (M)	गहराई (M)	मात्रा (घन मीटर)	टन
74 - 73	604	267	1	161268	332212
कुल				161268	332212

कुल खनन योग्य रिजर्व = 161268 घन मीटर या 332212 टन

तालिका वर्गीकरण खनिज भंडार:

रेत घाट	क्षेत्र (हेक्टेयर)	भूवैज्ञानिक भंडार (घन/मी)	खनन योग्य भंडार (घन/मी)	LoI के अनुसार वार्षिक खनन योग्य अनुमत रिजर्व (घन/मी)
जमुई किउल ब्लॉक 15	17.6	176000	161268	105600

यह नदी तल जमा है और खनन क्षेत्र हर साल मानसून अविध के दौरान फिर से भर जाएगा और खदान की गहराई हर साल नदी की रेत से भर जाएगा (रिप्लेनिशमेंट) और क्षेत्र अपनी मूल स्थलाकृति बहाल को कर देगा।

साइट सुविधाएं और उपयोगिताएँ

• जलापूर्ति

श्रमिकों को पीने व घरेलू उपयोग के लिए पानी उपलब्ध कराया जाएगा। धूल के दमन के लिए भी पानी की आवश्यकता होगी। प्रस्तावित परियोजना के लिए 4.90 केएलड़ी के जल की आवश्यकता होगी। ताजे पानी का उपयोग केवल पीने के उद्देश्य के लिए किया जाएगा। आसपास के गांव के उपलब्ध स्रोतों से पानी की आपूर्ति की जाएगी।

• अस्थायी विश्राम गृह

विश्राम के लिए स्थल के पास श्रमिकों के लिए एक अस्थायी विश्राम आश्रय प्रदान किया जाएगा। इसके अलावा, छोटे कीड़ों की कुछ प्रजातियों द्वारा उत्पादित जहर का मुकाबला करने के लिए एंटी-वेनम के साथ प्राथमिक उपचार बॉक्स, यदि कोई हो और श्रमिकों के लिए स्वच्छता सुविधा जैसे सेप्टिक टैंक या सामुदायिक शौचालय की स्विधा प्रदान की जाएगी।

• आधारभूत पर्यावरणीय स्थिति

वायु, ध्वनि, जल, मिट्टी, वनस्पति एवं जीव-जन्तुओं के लिए प्रस्तावित खनन के संबंध में पर्यावरणीय डाटा एकत्र किया गया है। बेसलाइन पर्यावरण अध्ययन मार्च 2023 से मई 2023 तक प्री मानसून के मौसम के दौरान खनन पट्टा क्षेत्र के आसपास 10 किमी की रेडियल दूरी वाले क्षेत्र में किया गया था।

• मौसम विज्ञान

निगरानी अवधि मार्च 2023 से मई 2023 के लिए संक्षिप्त मौसम संबंधी डेटा नीचे दिया गया है:

	तापमान °C		हवा की गति (किमी/घंटा)	
महीना	न्यूनतम	अधिकतम	औसतन	अधिकतम

मार्च 2023	21	38	9.8	21.8
अप्रैल 2023	26	44	12.8	25.4
मई 2023	27	44	12.9	25.7

आधारभूत पर्यावरणीय स्थिति

गुण	आधारभूत स्थिति
एम्बिएंट(परिवेशी) वायु	एम्बिएंट (परिवेशी) वायु गुणवत्ता निगरानी से पता चलता है कि सभी
ग्णवत्ता	08 AQ निगरानी स्टेशनों में PM2.5 की न्यूनतम और अधिकतम
	सांद्रता क्रमशः 32.15 μg/m3 से 59.47μg/m3 पाई गई; PM10 52.38
	µg/m3to 89.81 µg/m3 की सीमा में था जहां तक गैसीय प्रदूषकों SO2
	और NO2 का संबंध है, आवासीय और ग्रामीण क्षेत्रों के लिए 80 µg/m3
	की निर्धारित CPCB सीमा किसी भी स्टेशन पर पार नहीं की गई है।
शोर का स्तर	निगरानी कार्यक्रम के परिणामों ने संकेत दिया कि निगरानी किए गए
	सभी स्थानों पर शोर के दिन और रात दोनों समय एनएएक्यूएस की
	निर्धारित सीमा के भीतर थे।
पानी की गुणवत्ता	सभी स्रोतों से भूजल पीने के उद्देश्यों के लिए उपयुक्त रहता है क्योंकि
	सभी घटक IS: 10500 द्वारा प्रख्यापित पेयजल मानकों द्वारा
	निर्धारित सीमा के भीतर हैं।
	किउल नदी के सतही जल विश्लेषण के परिणामों से यह स्पष्ट होता है
	कि नमूनों के अधिकांश पैरामीटर सीपीसीबी के 'श्रेणी बी' मानकों का
	अनुपालन करते हैं, जो इंगित करता है यह जल स्नान के लिए उपयुक्त
	हैं।
मिट्टी की गुणवत्ता	चिन्निहित किए गए स्थानों से एकत्र किए गए नमूने इंगित करते हैं कि
	मिट्टी रेतीली प्रकार की है और पीएच मान 7.36 से 8.04 के बीच है, जो
	दर्शाता है कि मिट्टी प्रकृति में थोड़ी क्षारीय है।
पारिस्थितिकी और जैव	अध्ययन क्षेत्र में कोई पर्यावरण-संवेदनशील क्षेत्र नहीं है।
विविधता	
सामाजिक आर्थिक	नदी तल पर रेत खनन परियोजना के कार्यान्वयन से स्थानीय

लोगों को प्रत्यक्ष और अप्रत्यक्ष दोनों तरह के रोजगार के अवसर मिलेंगे।

अध्ययन क्षेत्र में शिक्षा, स्वास्थ्य, आवास, पानी, बिजली आदि को और बेहतर किया जा सकता है। उम्मीद है कि प्रस्तावित खनन परियोजना और संबद्ध औद्योगिक और व्यावसायिक गतिविधियों के कारण इसमें काफी हद तक और सुधार होगा।

अनुमानित पर्यावरणीय प्रभाव

• वायु पर्यावरण पर प्रभाव

प्रस्तावित खनन गतिविधियां खनन में प्रयुक्त अन्य परिवहन वाहनों की लोडिंग और आवाजाही से धूल (SPM/RSPM) उत्पन्न होगी। खदान स्थल पर उचित जल छिड़काव किया जाएगा। हवा से होने वाले क्षणिक उत्सर्जन को कम करने के लिए खनिज को ढके हुए तिरपाल ट्रकों/टिप्परों के माध्यम से सड़क मार्ग से ले जाया जाएगा।

• जल पर्यावरण पर प्रभाव

नदी के भीतर या उसके पास से रेत के खनन का मानसून के मौसम के दौरान भौतिक-रासायनिक आवास विशेषताओं पर अप्रत्यक्ष प्रभाव पड़ता है। इन विशेषताओं में धारा खुरदरापन, तत्व, गहराई, वेग, मैलापन, तलछट परिवहन और धारा निर्वहन शामिल हैं।

संस्तर सामग्री खनन से उत्पन्न बायोटा पर हानिकारक प्रभाव, यदि कोई हो, निम्नलिखित के कारण होते हैं:

- नदी के परिवर्तन के परिणामस्वरूप प्रवाह पैटर्न में बदलाव
- मानसून के मौसम में निलम्बित तलछट की अधिकता।

परियोजना गतिविधि केवल किउल नदी के शुष्क भाग में की जाएगी। इसलिए, परियोजना की कोई भी गतिविधि सीधे तौर पर जल पर्यावरण को प्रभावित नहीं करती है। परियोजना में केवल मानसून के मौसम में किसी धारा को मोड़ने या काट देने का प्रस्ताव नहीं है। नदी (मानसून में) या भूजल दोहन से पानी की पंपिंग के लिए किसी प्रस्ताव की परिकल्पना नहीं की गई है।

भूमि पर्यावरण पर प्रभाव

स्ट्रीम बेड सामग्री का प्रस्तावित निष्कर्षण, मौजूदा स्ट्रीमबेड के नीचे खनन, और चैनल-बेड फॉर्म और आकार में परिवर्तन से चैनल बेड और बैंकों के क्षरण, चैनल ढलान में वृद्धि, और चैनल आकारिकी में परिवर्तन जैसे कई प्रभाव हो सकते हैं, यदि, संचालन व्यवस्थित रूप से नहीं किया जाता है।

रेत के व्यवस्थित और वैज्ञानिक तरीके से हटाने से क्यारियों का क्षरण नहीं होगा। कचरे के रूप में उत्पन्न गाद और मिट्टी का उपयोग वृक्षारोपण के लिए या निचले इलाकों को कहीं और भरने के लिए किया जाएगा। खनन की योजना गैर-मानसून मौसम में ही बनाई जाती है, ताकि उत्खनित क्षेत्र प्रत्येक वर्ष मानसून के दौरान धीरे-धीरे भर जाए (रिप्लेनिशमेंट)।

शोर पर्यावरण पर प्रभाव

प्रस्तावित खनन गतिविधि प्रकृति में अर्ध-मशीनीकृत है। खनन गतिविधि के लिए कोई ड्रिलिंग और ब्लास्टिंग परिकल्पित नहीं है। इसलिए, केवल खनिजों के परिवहन के लिए तैनात वाहनों की आवाजाही के कारण प्रभाव का अनुमान लगाया गया है। वाहनों को अच्छी चालू स्थिति में रखा जाएगा ताकि शोर को न्यूनतम संभव स्तर तक कम किया जा सके।

जैविक पर्यावरण पर प्रभाव

चूंकि प्रस्तावित खनन वैज्ञानिक तरीके से किया जाएगा, इसलिए ज्यादा महत्वपूर्ण प्रभाव का अनुमान नहीं है। जलीय जीवन पर प्रभाव को कम करने के लिए मानसून के मौसम के दौरान कोई खनन नहीं किया जाएगा जो कि कई प्रजातियों के लिए मुख्य रूप से प्रजनन का मौसम है। खनन स्थल पर कोई वनस्पति नहीं है; वनस्पति की सफाई नहीं की जाएगी। ढोने वाली सड़कों पर पानी का छिड़काव किया जाएगा जिससे धूल का उत्सर्जन कम होगा और इस प्रकार फसलों को होने वाले नुकसान से बचा जा सकेगा।

सामाजिक आर्थिक पर्यावरण पर प्रभाव

क्षेत्र में खनन गतिविधि का प्रभाव क्षेत्र के सामाजिक-आर्थिक वातावरण पर सकारात्मक है। रेत खनन से स्थानीय लोगों को जब भी श्रमबल की आवश्यकता होगी रोजगार उपलब्ध होगा।

पोस्ट प्रोजेक्ट पर्यावरण निगरानी

क्रम संख्या	पैरामीटर्स का विवरण	निगरानी की अनुसूची
1	हवा की गुणवत्ता	मानसून को छोड़कर प्रत्येक मौसम में सप्ताह में दो बार/तीन बार 24 घंटे के नमूने
2	जल गुणवत्ता (सतह और भूजल)	साल में 4 सीजन के लिए एक बार
3	मिट्टी की गुणवत्ता	परियोजना क्षेत्र में वर्ष में एक बार
4	शोर स्तर	साल में दो बार पहले दो साल और फिर साल में एक बार
5	सामाजिक-आर्थिक स्थिति	3 साल में एक बार
6	वृक्षारोपण निगरानी	एक बार एक मौसम में

अतिरिक्त अध्ययन

• सार्वजनिक सुनवाई

जन सुनवाई अभी बाकी है।

❖ जोखिम आकलन

पूर्ण खनन कार्य एक योग्य खदान प्रबंधक होल्डिंग के प्रबंधन नियंत्रण और निर्देशन में किया जाएगा। डीजीएमएस नियमित रूप से स्थायी आदेश, मॉडल स्थायी आदेश और आपदा, यदि कोई हो, के मामले में खान प्रबंधन द्वारा पालन किए जाने वाले परिपत्र जारी करता रहा है। साथ ही खनन कर्मचारियों को सतर्क रखने के लिए समय-समय पर रिफ्रेशर कोर्स में भेजा जाएगा।

आपदा प्रबंधन योजना

आपदा प्रबंधन की योजना में आपातकालीन तैयारी एक महत्वपूर्ण पहलू है। कार्मिकों को उचित रूप से प्रशिक्षित किया जाएगा और सावधानीपूर्वक नियोजित, सिम्युलेटेड प्रक्रियाओं के माध्यम से आपातकालीन प्रतिक्रिया में मानसिक और शारीरिक रूप से तैयार किया जाएगा। इसी तरह, प्रमुख कर्मियों और आवश्यक कर्मियों को संचालन में प्रशिक्षित किया जाएगा।

परियोजना लाभ

- भौतिक लाभः सड़क परिवहन, बाजार, हरित आवरण में वृद्धि और सामुदायिक संपत्तियों का निर्माण।
- सामाजिक लाभः रोजगार क्षमता में वृद्धि, राजकोष में योगदान, स्वास्थ्य संबंधी गतिविधियों में वृद्धि,
 शैक्षिक उपलिब्धियां और मौजूदा साम्दायिक स्विधाओं का स्टढ़ीकरण।

पर्यावरणीय लाभ:

- नदी चैनल को नियंत्रित करना और बैंकों की स्रक्षा करना।
- बाढ़ के कारण आसपास की कृषि भूमि के डूबने को कम करना।
- नदी के स्तर के उन्नयन को कम करना।
- अवैध खनन गतिविधि पर एक जांच।

कॉर्पोरेट की सामाजिक जिम्मेदारी

दिनांक 1 मई 2018 के कार्यालय ज्ञापन के अनुसार परियोजना लागत की पूंजीगत लागत का 2% कॉर्पोरेट पर्यावरणीय उत्तरदायित्व के लिए आवंटित किया जाएगा। लोगों की जरूरतों और मांग को ध्यान में रखते हुए निम्नलिखित प्रस्तावित किया गया है।

जमुई किउल ब्लॉक 15 के लिए सीईआर (CER) लागत कुल परियोजना लागत का 2% होगी। इस राशि का उपयोग समाज कल्याण के लिए किया जाएगा। सीएसआर (CSR) लागत 2,01,64,000/- x 2%= रु. 4,03,280/-

प्रत्येक गतिविधि के लिए प्रस्तावक द्वारा निर्धारित की जाने वाली धनराशि का निर्धारण जन सुनवाई के दौरान स्थानीय प्राधिकारी/लोगों एवं हितग्राहियों से चर्चा के बाद किया जायेगा। सीईआर कार्यक्रम के तहत की जाने वाली गतिविधियों का समवर्ती मूल्यांकन करने की योजना बनाई गई है।

वृक्षारोपणः

- परियोजना से कोई पेड़ नहीं कटेगा। तथापि, असामाजिक उत्तरदायित्व, सड़क के दोनों ओर और नदी के किनारे हरियाली विकसित की जाएगी। इन वृक्षारोपण को बढ़ाने के लिए सामुदायिक सेवाओं को तैनात किया जाएगा। आर्थिक महत्व के पेड़ और देशी मूल के पेड़ जैसे फलों के पेड़ लगाए जाएंगे।
- लगभग योजना अवधि में हॉल रोड के आसपास 176 पौधे रोपे जाएंगे।
- वृक्षारोपण के लिए प्रस्तावित पेड़ हैं:
- सस्टेनेबल सैंड मैनेजमेंट एंड माइनिंग गाइडलाइंस 2016 के अनुसार ग्रीनबेल्ट के विकास के लिए प्रति हेक्टेयर न्यूनतम 5 पौधे प्रस्तावित किए जाएंगे लेकिन पर्यावरण की बेहतर स्थिति के लिए परियोजनाओं के इस समूह में 10 पौधे प्रति हेक्टेयर प्रस्तावित किए जाएंगे।
- पीपल, अर्ज्न, जाम्न, नीम, आम आदि के पेड़ लगाए जाएंगे।

पर्यावरण प्रबंधन योजना (ईएमपी)

- 🕨 रिवर बैंक से सुरक्षा क्षेत्र छोड़कर नदी तल से निकासी की जाएगी।
- 🕨 अधिकतम काम करने की गहराई क्षेत्र के भूजल तालिका के ऊपर रहेगी।
- स्वास्थ्य प्रभावों को कम करने के लिए प्रभाव क्षेत्र में श्रमिकों और आसपास के लोगों को
 स्वास्थ्य स्विधाएं प्रदान किया जायेगा ।
- वन्यजीव संरक्षण सुनिश्चित करना और उसी के लिए जागरूकता अभियान की व्यवस्था किया जायेगा।
- > नदी में महीन तलछट छोड़ने वाली गतिविधियों को किया जायेगा।
- खिनजों के परिवहन और प्रबंधन के दौरान गड़बड़ी को कम करने के लिए प्रभावी शमन
 उपाय अपनाए जाएंगे
- स्थानीय/देशी और तेजी से बढ़ने वाली प्रजातियों के वृक्षारोपण के साथ सुधार कार्यक्रम की
 स्थापना किया जायेगा
- मानसून के मौसम की शुरुआत में खान के बंद होने के दौरान बहाली योजना की स्थापना
 किया जायेगा

- आसन्न आपदाओं के प्रभाव से बचने के लिए समय पर एहितयाती उपाय करने के लिए प्रभावी आपदा प्रबंधन योजना की स्थापना।
- 🕨 पर्यावरण प्रबंधन प्रकोष्ठ द्वारा प्रभावी निगरानी कार्यक्रम की स्थापना किया जायेगा।

ईएमपी कार्यान्वयन के लिए बजट आवंटन

टेबल, ईएमपी का बजट (जमुई किउल ब्लॉक 15)

क्रम संख्या	विवरण	पूंजी लागत (लाख)	आवर्ती लागत (लाख)
1	प्रदूषण नियंत्रण और धूल दमन	Nil	1.5
2	प्रदूषण निगरानी i) वायु प्रदूषण ii) मृदा प्रदूषण iii) जल प्रदूषण iv) ध्वनि प्रदूषण		2.0
3	वृक्षारोपण और वेतन एक माली के लिए (अंशकालिक आधार पर)	1.76	0.5
4	परिवहन सड़क रखरखाव लागत	1.60	1.5
	कुल	3.36	5.5

नोट: *176 पौधे * 1000 रुपये (हेज और बाड़ सहित प्रत्येक पौधे के लिए) = 1,76,000/- रुपये

निष्कर्ष

ईआईए अध्ययन के आधार पर यह देखा गया है कि धूल प्रदूषण में वृद्धि होगी, जिसे पानी के छिड़काव और वृक्षारोपण द्वारा नियंत्रित किया जाएगा। खनन गतिविधियों के कारण (एम्बिएंट) परिवेशी पर्यावरण और पारिस्थितिकी पर नगण्य प्रभाव पड़ेगा, इसके अलावा खनन संचालन से क्षेत्र में प्रत्यक्ष और अप्रत्यक्ष रोजगार सृजन होगा। क्षेत्र के चारों ओर हरित पट्टी का विकास एक प्रभावी प्रदूषण न्यूनीकरण तकनीक के साथ-साथ खान परिसर से निकलने वाले प्रदूषकों को नियंत्रित करने के लिए भी किया जाएगा। खनन कार्य

[ं] ढोना सडक रखरखाव के लिए श्रम का वेतन 2 श्रमिक *300=600 प्रति दिन

^{· 600* 250= 1,50,000/-}

^{*2.5} लाख प्रति किलोमीटर (2,50,000*0.64 किमी लंबी सड़क) = 1,64,000/-

जारी रहने तक निगरानी कार्यक्रम का पालन किया जाएगा। इसलिए, यह संक्षेप में कहा जा सकता है कि खान के विकास से क्षेत्र के सामाजिक-आर्थिक वातावरण पर सकारात्मक प्रभाव पड़ेगा और क्षेत्र के सतत विकास को बढ़ावा मिलेगा।
